Home | Legals | Data Protection | Sitemap | KIT
Ehrenberg
Topic 1 Spokesperson
+49 721 608 26363
helmut ehrenbergUjz0∂kit edu
Prof. Dr. Rüdiger Eichel
Topic 1 Co-Spokesperson
Forschungszentrum Jülich

Topic 1 Electrochemical Energy Storage

Electrochemical Energy Storage with sufficient capacity and highly efficient charge and discharge characteristics is of enormous strategic importance for mobile, as well as short and medium-term stationary applications. Portable applications require more power and longer operation independent of the electrical grid, and electric cars suffer from the short driving range offered by relatively low amounts of energy stored in batteries and from the high cost of the systems. The amounts of energy generated from sustainable sources fluctuate widely and to some extent unpredictably. Combined with the heterogeneous demands of different users (households, industry, traffic, heat) this leads to a wide range of requirements regarding storage periods, retrieval and consistency of supply. Electrochemical storage is highly to meet this demand with a corresponding range of storage systems and technologies, as well as with options for integrating and networking such systems.

Electrochemical Energy Storage is a highly efficient concept and essential to reaching the ambitious targets of the "Energiewende". The complex processes inside a battery require a comprehensive research approach. This topic addresses aspects ranging from fundamental science like electrochemistry, characterisation and materials development, to cell preparation and assembling from small-scale size and up-scaling to applications and grid integration. The most promising electrochemical concepts will be considered – from lithium-ion batteries, which are already widely used, to next generation technologies, to novel concepts still at the proof-of-concept stage but promising superior performance parameters.

 

Participating Helmholtz Centers: DLR, FZJ, HZB, HZDR and KIT

Participating Institutes at KIT: HIU, IAM-AWP, IAM-ESS, IAM-KWT, IAM-WBM, IAM-WK, INT, IPE, Battery Technical Center

Publications Topic 1 at KIT


2020
Copper Porphyrin as a Stable Cathode for High‐Performance Rechargeable Potassium Organic Batteries.
Lv, S.; Yuan, J.; Chen, Z.; Gao, P.; Shu, H.; Yang, X.; Liu, E.; Tan, S.; Ruben, M.; Zhao‐Karger, Z.; Fichtner, M.
2020. ChemSusChem, 13 (9), 2286–2294. doi:10.1002/cssc.202000425
Enabling high rate capability, low internal resistance, and excellent cyclability for vanadium redox flow batteries utilizing ultrafast laser-structured graphite felt.
Daugherty, M. C.; Hsieh, C.-T.; Aaron, D. S.; Ashraf Gandomi, Y.; Li, J.; Zheng, Y.; Pfleging, W.
2020. Electrochimica acta, 344, 136171. doi:10.1016/j.electacta.2020.136171
Highly Reversible Sodiation of Tin in Glyme Electrolytes: The Critical Role of the Solid Electrolyte Interphase and Its Formation Mechanism.
Qin, B.; Schiele, A.; Jusys, Z.; Mariani, A.; Diemant, T.; Liu, X.; Brezesinski, T.; Behm, R. J.; Varzi, A.; Passerini, S.
2020. ACS applied materials & interfaces, 12 (3), 3697–3708. doi:10.1021/acsami.9b20616
Manufacturing Process for Improved Ultra‐Thick Cathodes in High‐Energy Lithium‐Ion Batteries.
Kremer, L. S.; Hoffmann, A.; Danner, T.; Hein, S.; Prifling, B.; Westhoff, D.; Dreer, C.; Latz, A.; Schmidt, V.; Wohlfahrt-Mehrens, M.
2020. Energy technology, 8 (2), Art.-Nr. 1900167. doi:10.1002/ente.201900167
In Situ X-ray Diffraction and X-ray Absorption Spectroscopic Studies of a Lithium-Rich Layered Positive Electrode Material: Comparison of Composite and Core-Shell Structures.
Ehi-Eromosele, C. O.; Indris, S.; Bramnik, N. N.; Sarapulova, A.; Trouillet, V.; Pfaffman, L.; Melinte, G.; Mangold, S.; Darma, M. S. D.; Knapp, M.; Ehrenberg, H.
2020. ACS applied materials & interfaces, 12 (12), 13852–13868. doi:10.1021/acsami.9b21061
Overcoming the Interfacial Limitations Imposed by the Solid–Solid Interface in Solid‐State Batteries Using Ionic Liquid‐Based Interlayers [in press].
Pervez, S. A.; Kim, G.; Vinayan, B. P.; Cambaz, M. A.; Kuenzel, M.; Hekmatfar, M.; Fichtner, M.; Passerini, S.
2020. Small. doi:10.1002/smll.202000279
Effect of process parameters on surface texture generated by laser polishing of additively manufactured Ti-6Al-4V.
dos Santos Solheid, J.; Elkaseer, A.; Wunsch, T.; Charles, A.; Seifert, H. J.; Pfleging, W.
2020. U. Klotzbach, R. Kling & A. Watanabe (Hrsg.), Laser-based Micro- and Nanoprocessing XIV, 24 S., SPIE, Bellingham, WA. doi:10.1117/12.2545623
Gassing Behavior of High‐Entropy Oxide Anode and Oxyfluoride Cathode Probed Using Differential Electrochemical Mass Spectrometry.
Breitung, B.; Wang, Q.; Schiele, A.; Tripković, Đ.; Sarkar, A.; Velasco, L.; Wang, D.; Bhattacharya, S. S.; Hahn, H.; Brezesinski, T.
2020. Batteries & supercaps, 3 (4), 361–369. doi:10.1002/batt.202000010
Bottom‐up Design of Bimetallic Cobalt–Molybdenum Carbides/Oxides for Overall Water Splitting.
Liu, R.; Anjass, M.; Greiner, S.; Liu, S.; Gao, D.; Biskupek, J.; Kaiser, U.; Zhang, G.; Streb, C.
2020. Chemistry - a European journal, 26 (18), 4157–4164. doi:10.1002/chem.201905265
From Trigonal to Cubic LiVO₂: A High-Energy Phase Transition toward Disordered Rock Salt Materials.
Chable, J.; Baur, C.; Chang, J. H.; Wenzel, S.; Garciá-Lastra, J. M.; Vegge, T.
2020. The journal of physical chemistry <Washington, DC> / C, 124 (3), 2229–2237. doi:10.1021/acs.jpcc.9b11235
Thermophysical Properties of Lithium Aluminum Germanium Phosphate with Different Compositions.
Rohde, M.; Cui, Y.; Ziebert, C.; Seifert, H. J.
2020. International journal of thermophysics, 41 (3), Art. Nr.: 31. doi:10.1007/s10765-020-2607-0
An: In situ structural study on the synthesis and decomposition of LiNiO2.
Bianchini, M.; Fauth, F.; Hartmann, P.; Brezesinski, T.; Janek, J.
2020. Journal of materials chemistry / A, 8 (4), 1808–1820. doi:10.1039/c9ta12073d
Solid-state-stabilization of molecular vanadium oxides for reversible electrochemical charge storage.
Greiner, S.; Anjass, M. H.; Fichtner, M.; Streb, C.
2020. Inorganic chemistry frontiers, 7 (1), 134–139. doi:10.1039/c9qi01229j
Polymerizable Ceramic Ink System for Thin Inkjet-Printed Dielectric Layers.
Reinheimer, T.; Azmi, R.; Binder, J. R.
2020. ACS applied materials & interfaces, 12 (2), 2974–2982. doi:10.1021/acsami.9b18610
Local Electronic Structure in AlN Studied by Single-Crystal ²⁷Al and ¹⁴N NMR and DFT Calculations.
Zeman, O. E. O.; Moudrakovski, I. L.; Hartmann, C.; Indris, S.; Bräuniger, T.
2020. Molecules, 25 (3), Article No.469. doi:10.3390/molecules25030469
Influence of residual water and cation acidity on the ionic transport mechanism in proton-conducting ionic liquids.
Lin, J.; Wang, L.; Zinkevich, T.; Indris, S.; Suo, Y.; Korte, C.
2020. Physical chemistry, chemical physics, 22 (3), 1145–1153. doi:10.1039/c9cp04723a
Development and Investigation of a NASICON‐Type High‐Voltage Cathode Material for High‐Power Sodium‐Ion Batteries.
Chen, M.; Hua, W.; Xiao, J.; Cortie, D.; Guo, X.; Wang, E.; Gu, Q.; Hu, Z.; Indris, S.; Wang, X.; Chou, S.; Dou, S.
2020. Angewandte Chemie, 132 (6), 2470–2477. doi:10.1002/ange.201912964
Influence of electronically conductive additives on the cycling performance of argyrodite-based all-solid-state batteries.
Strauss, F.; Stepien, D.; Maibach, J.; Pfaffmann, L.; Indris, S.; Hartmann, P.; Brezesinski, T.
2020. RSC Advances, 10 (2), 1114–1119. doi:10.1039/c9ra10253a
Li₁₅P₄S₁₆Cl₃, a Lithium Chlorothiophosphate as a Solid-State Ionic Conductor.
Liu, Z.; Zinkevich, T.; Indris, S.; He, X.; Liu, J.; Xu, W.; Bai, J.; Xiong, S.; Mo, Y.; Chen, H.
2020. Inorganic chemistry, 59 (1), 226–234. doi:10.1021/acs.inorgchem.9b01751
Amorphous Mo₅O₁₄-Type/Carbon Nanocomposite with Enhanced Electrochemical Capability for Lithium-Ion Batteries.
Hashem, A. M.; Abdel-Ghany, A. E.; El-Tawil, R. S.; Indris, S.; Ehrenberg, H.; Mauger, A.; Julien, C. M.
2020. Nanomaterials, 10 (1), Article No.8. doi:10.3390/nano10010008
High loading CuS-based cathodes for all-solid-state lithium sulfur batteries with enhanced volumetric capacity.
Hosseini, S. M.; Varzi, A.; Ito, S.; Aihara, Y.; Passerini, S.
2020. Energy storage materials, 27, 61–68. doi:10.1016/j.ensm.2020.01.022
Casein-Derived Activated Carbon: Turning Expired Milk into Active Material for Electrochemical Capacitors [in press].
Schütter, C.; Varzi, A.; Lodovico, L.; Ruschhaupt, P.; Balducci, A.
2020. Energy technology, 1901225. doi:10.1002/ente.201901225
An “interaction-mediating” strategy towards enhanced solubility and redox properties of organics for aqueous flow batteries.
Huang, Z.; Kay, C. W. M.; Kuttich, B.; Rauber, D.; Kraus, T.; Li, H.; Kim, S.; Chen, R.
2020. Nano energy, 69, Article No.104464. doi:10.1016/j.nanoen.2020.104464
Ionic Liquid Electrolytes for Metal-Air Batteries: Interactions between O2, Zn2+ and H2O Impurities.
Alwast, D.; Schnaidt, J.; Jusys, Z.; Behm, R. J.
2020. Journal of the Electrochemical Society, 167 (1), Art. Nr.: 070505. doi:10.1149/2.0052007JES
Investigation of lithium-ion battery degradation mechanisms by combining differential voltage analysis and alternating current impedance.
Zhu, J.; Dewi Darma, M. S.; Knapp, M.; Sørensen, D. R.; Heere, M.; Fang, Q.; Wang, X.; Dai, H.; Mereacre, L.; Senyshyn, A.; Wei, X.; Ehrenberg, H.
2020. Journal of power sources, 448, Article: 227575. doi:10.1016/j.jpowsour.2019.227575
Electrochemical intercalation of anions in graphite for high-voltage aqueous zinc battery.
Zhang, H.; Liu, X.; Qin, B.; Passerini, S.
2020. Journal of power sources, 449, Article: 227594. doi:10.1016/j.jpowsour.2019.227594
Incorporating SnO nanodots into wood flour-derived hierarchically porous carbon as low-cost anodes for superior lithium storage.
Zhang, W.; Xu, Y.; Li, H.; Wang, C.; Qin, B.; Li, Z.; Chen, Y.; Jiang, K.; Zhang, H.
2020. Journal of electroanalytical chemistry, 856, Art.-Nr.: 113654. doi:10.1016/j.jelechem.2019.113654
Laser polishing of additively manufactured Ti-6Al-4V - Microstructure evolution and material properties.
Solheid, J.; Mohanty, S.; Bayat, M.; Wunsch, T.; Weidler, P. G.; Seifert, H. J.; Pfleging, W.
2020. Journal of laser applications, 32, 022019. doi:10.2351/7.0000065
Efficient Operation of Modular Grid-Connected Battery Inverters for RES Integration.
Ried, S.; Schmiegel, A. U.; Munzke, N.
2020. Advances in Energy System Optimization : Proceedings of the 2nd International Symposium on Energy System Optimization. Ed.: V. Bertsch, 165–178, Birkhäuser, Cham. doi:10.1007/978-3-030-32157-4_10
Changing the Static and Dynamic Lattice Effects for the Improvement of the Ionic Transport Properties within the Argyrodite Li₆PS₅₋ₓSeₓI.
Schlem, R.; Ghidiu, M.; Culver, S. P.; Hansen, A.-L.; Zeier, W. G.
2020. ACS applied energy materials, 3 (1), 9–18. doi:10.1021/acsaem.9b01794
Highlighting the Reversible Manganese Electroactivity in Na‐Rich Manganese Hexacyanoferrate Material for Li‐ and Na‐Ion Storage.
Mullaliu, A.; Asenbauer, J.; Aquilanti, G.; Passerini, S.; Giorgetti, M.
2020. Small methods, 4 (1), Article: 1900529. doi:10.1002/smtd.201900529
Structure rearrangements induced by lithium insertion in metal alloying oxide mixed spinel structure studied by x-ray absorption near-edge spectroscopy.
Rezvani, S. J.; Mijiti, Y.; Gunnella, R.; Nobili, F.; Trapananti, A.; Minicucci, M.; Ciambezi, M.; Bresser, D.; Nannarone, S.; Passerini, S.; Di Cicco, A.
2020. Journal of physics and chemistry of solids, 136, Article: 109172. doi:10.1016/j.jpcs.2019.109172
2019
The Importance of Recyclability for the Environmental Performance of Battery Systems.
Peters, J. F.; Weil, M.; Baumann, M.
2019. Cascade Use in Technologies 2018 : Internationale Konferenz zur Kaskadennutzung und Kreislaufwirtschaft – Oldenburg 2018. Ed.: A. Pehlken, 104–110, Springer, Berlin. doi:10.1007/978-3-662-57886-5_13
Halide-Based Materials and Chemistry for Rechargeable Batteries [in press].
Zhao, X.; Zhao-Karger, Z.; Fichtner, M.; Shen, X.
2019. Angewandte Chemie / International edition. doi:10.1002/anie.201902842
MULTIBAT: Unified workflow for fast electrochemical 3D simulations of lithium-ion cells combining virtual stochastic microstructures, electrochemical degradation models and model order reduction.
Feinauer, J.; Hein, S.; Rave, S.; Schmidt, S.; Westhoff, D.; Zausch, J.; Iliev, O.; Latz, A.; Ohlberger, M.; Schmidt, V.
2019. Journal of computational science, 31, 172–184. doi:10.1016/j.jocs.2018.03.006
Analysis of microstructural effects in multi-layer lithium-ion battery cathodes.
Westhoff, D.; Danner, T.; Hein, S.; Scurtu, R.; Kremer, L.; Hoffmann, A.; Hilger, A.; Manke, I.; Wohlfahrt-Mehrens, M.; Latz, A.; Schmidt, V.
2019. Materials characterization, 151, 166–174. doi:10.1016/j.matchar.2019.02.031
Transition‐Metal Oxides/Carbides@Carbon Nanotube Composites as Multifunctional Electrocatalysts for Challenging Oxidations and Reductions.
Xing, X.; Liu, R.; Cao, K.; Kaiser, U.; Streb, C.
2019. Chemistry - a European journal, 25 (47), 11098–11104. doi:10.1002/chem.201901400
4-V flexible all-solid-state lithium polymer batteries.
Chen, Z.; Kim, G.-T.; Wang, Z.; Bresser, D.; Qin, B.; Geiger, D.; Kaiser, U.; Wang, X.; Shen, Z. X.; Passerini, S.
2019. Nano energy, 64, 103986. doi:10.1016/j.nanoen.2019.103986
Heterogeneous Catalysis by Polyoxometalates in Metal–Organic Frameworks.
Samaniyan, M.; Mirzaei, M.; Khajavian, R.; Eshtiagh-Hosseini, H.; Streb, C.
2019. ACS catalysis, 9 (11), 10174–10191. doi:10.1021/acscatal.9b03439
Grand Canonical ReaxFF Molecular Dynamics Simulations for Catalytic Reactions.
Jung, C. K.; Braunwarth, L.; Jacob, T.
2019. Journal of chemical theory and computation, 15 (11), 5810–5816. doi:10.1021/acs.jctc.9b00687
Theory of Impedance Spectroscopy for Lithium Batteries.
Single, F.; Horstmann, B.; Latz, A.
2019. The journal of physical chemistry <Washington, DC> / C, 123 (45), 27327–27343. doi:10.1021/acs.jpcc.9b07389
Kinetics accommodation in Li-ion mechanistic modeling.
Schindler, S.; Baure, G.; Danzer, M. A.; Dubarry, M.
2019. Journal of power sources, 440, 227117. doi:10.1016/j.jpowsour.2019.227117
From Solid-Solution Electrodes and the Rocking-Chair Concept to Today’s Batteries.
Zhang, H.; Li, C.; Eshetu, G. G.; Laruelle, S.; Grugeon, S.; Zaghib, K.; Julien, C.; Mauger, A.; Guyomard, D.; Rojo, T.; Gisbert-Trejo, N.; Passerini, S.; Huang, X.; Zhou, Z.; Johansson, P.; Forsyth, M.
2019. Angewandte Chemie / International edition, 59 (2), 534–538. doi:10.1002/anie.201913923
Simulations of the Oxidation and Degradation of Platinum Electrocatalysts [in press].
Kirchhoff, B.; Braunwarth, L.; Jung, C.; Jónsson, H.; Fantauzzi, D.; Jacob, T.
2019. Small, 1905159. doi:10.1002/smll.201905159
Fabrication of TiO2-Nanotube-Array-Based Supercapacitors.
Ahmed, F.; Pervez, S. A.; Aljaafari, A.; Alshoaibi, A.; Abuhimd, H.; Oh, J.; Koo, B. H.
2019. Micromachines, 10 (11), Art. Nr.: 742. doi:10.3390/mi10110742
Towards stable and efficient electrolytes for room-temperature rechargeable calcium batteries.
Li, Z.; Fuhr, O.; Fichtner, M.; Zhao-Karger, Z.
2019. Energy & environmental science, 12 (12), 3496–3501. doi:10.1039/c9ee01699f
Properties of a GaAs Power Rectifier Diode Module for Ultra-Fast Electric Vehicle Battery Charging Systems.
Blank, T.; Dudek, V.; An, B.; Wurst, H.; Luh, M.; Ishikawa, D.; Leyrer, B.; Weber, M.
2019. PCIM Europe : International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, 07.- 09. May 2019, VDE-Verlag, Berlin
Characterization of Alternative Sinter Materials for Power Electronics.
Stenzel, D.; Schwarzer, C.; Schnepf, M.; Chew, L. M.; Blank, T.; Franke, J.; Kaloudis, M.
2019. 2019 22nd European Microelectronics and Packaging Conference & Exhibition (EMPC), 1–8, IEEE. doi:10.23919/EMPC44848.2019.8951880
Bulk and grain boundary Li-diffusion in dense LiMn₂O₄ pellets by means of isotope exchange and ToF-SIMS analysis.
Schwab, C.; Höweling, A.; Windmüller, A.; Gonzalez-Julian, J.; Möller, S.; Binder, J. R.; Uhlenbruck, S.; Guillon, O.; Martin, M.
2019. Physical chemistry, chemical physics, 21 (47), 26066–26076. doi:10.1039/c9cp05128g
Lithium heterogeneities in cylinder-type Li-ion batteries – fatigue induced by cycling [in press].
Petz, D.; Mühlbauer, M. J.; Baran, V.; Frost, M.; Schökel, A.; Paulmann, C.; Chen, Y.; Garcés, D.; Senyshyn, A.
2019. Journal of power sources, Art.-Nr.: 227466. doi:10.1016/j.jpowsour.2019.227466
Electrochemical investigations of high-voltage NaNi(PO)PO cathode for sodium-ion batteries.
Kumar, P. R.; Yahia, H. B.; Belharouak, I.; Sougrati, M. T.; Passerini, S.; Amin, R.; Essehli, R.
2019. Journal of solid state electrochemistry. doi:10.1007/s10008-019-04448-6
A quasielastic and inelastic neutron scattering study of the alkaline and alkaline-earth borohydrides LiBH 4 and Mg(BH 4 ) 2 and the mixture LiBH 4 + Mg(BH 4 ) 2.
Silvi, L.; Zhao-Karger, Z.; Röhm, E.; Fichtner, M.; Petry, W.; Lohstroh, W.
2019. Physical chemistry, chemical physics, 21 (2), 718–728. doi:10.1039/c8cp04316g
An elementary 1-dimensional model for a solid state lithium-ion battery with a single ion conductor electrolyte and a lithium metal negative electrode.
Mykhaylov, M.; Ganser, M.; Klinsmann, M.; Hildebrand, F. E.; Guz, I.; McMeeking, R. M.
2019. Journal of the mechanics and physics of solids, 123, 207–221. doi:10.1016/j.jmps.2018.10.004
Exploits, advances and challenges benefiting beyond Li-ion battery technologies.
El Kharbachi, A.; Zavorotynska, O.; Latroche, M.; Cuevas, F.; Yartys, V.; Fichtner, M.
2019. Journal of alloys and compounds, 817, Article no: 153261. doi:10.1016/j.jallcom.2019.153261
Water-Soluble Polymeric Carbon Nitride Colloidal Nanoparticles for Highly Selective Quasi-Homogeneous Photocatalysis [in press].
Krivtsov, I.; Mitoraj, D.; Adler, C.; Ilkaeva, M.; Sardo, M.; Mafra, L.; Neumann, C.; Turchanin, A.; Li, C.; Dietzek, B.; Leiter, R.; Biskupek, J.; Kaiser, U.; Im, C.; Kirchhoff, B.; Jacob, T.; Beranek, R.
2019. Angewandte Chemie / International edition. doi:10.1002/anie.201913331
Effect of Electrolyte Additives on the LiNi0.5Mn0.3Co0.2O2 Surface Film Formation with Lithium and Graphite Negative Electrodes [in press].
Hekmatfar, M.; Hasa, I.; Eghbal, R.; Carvalho, D. V.; Moretti, A.; Passerini, S.
2019. Advanced materials interfaces, 1901500. doi:10.1002/admi.201901500
Stabilizing Effect of a Hybrid Surface Coating on a Ni-Rich NCM Cathode Material in All-Solid-State Batteries.
Kim, A.-Y.; Strauss, F.; Bartsch, T.; Teo, J. H.; Hatsukade, T.; Mazilkin, A.; Janek, J.; Hartmann, P.; Brezesinski, T.
2019. Chemistry of materials, 31 (23), 9664–9672. doi:10.1021/acs.chemmater.9b02947
Biosynthesized Silver Nanoparticle (AgNP) From Pandanus odorifer Leaf Extract Exhibits Anti-metastasis and Anti-biofilm Potentials.
Hussain, A.; Alajmi, M. F.; Khan, M. A.; Pervez, S. A.; Ahmed, F.; Amir, S.; Husain, F. M.; Khan, M. S.; Shaik, G. M.; Hassan, I.; Khan, R. A.; Rehman, M. T.
2019. Frontiers in microbiology, 10, Art. Nr.: 8. doi:10.3389/fmicb.2019.00008
Protection of Li metal anode by surface-coating of PVDF thin film to enhance the cycling performance of Li batteries.
Gao, Z.; Zhang, S.; Huang, Z.; Lu, Y.; Wang, W.; Wang, K.; Li, J.; Zhou, Y.; Huang, L.; Sun, S.
2019. Chinese chemical letters, 30 (2), 525–528. doi:10.1016/j.cclet.2018.05.016
Comparative Concept Study of Passive Hybrid Energy Storage Systems in 48 V Mild Hybrid Vehicles.
Grün, T.; Doppelbauer, M.
2019. World electric vehicle journal, 10 (4), Article No.71. doi:10.3390/wevj10040071
Controlling Hydrogenation Selectivity by Size: 3-Hexyne on Supported Pt Clusters.
Rötzer, M. D.; Crampton, A. S.; Krause, M.; Thanner, K.; Schweinberger, F. F.; Heiz, U.
2019. The journal of physical chemistry <Washington, DC> / C, 123 (9), 5518–5524. doi:10.1021/acs.jpcc.8b12151
Metal Electrode Surfaces Can Roughen Despite the Constraint of a Stiff Electrolyte.
McMeeking, R. M.; Ganser, M.; Klinsmann, M.; Hildebrand, F. E.
2019. Journal of the Electrochemical Society, 166 (6), A984–A995. doi:10.1149/2.0221906jes
MnO₂ and Reduced Graphene Oxide as Bifunctional Electrocatalysts for Li–O₂ Batteries.
Zhu, L.; Scheiba, F.; Trouillet, V.; Georgian, M.; Fu, Q.; Sarapulpva, A.; Sigel, F.; Hua, W.; Ehrenberg, H.
2019. ACS applied energy materials, 2 (10), 7121–7131. doi:10.1021/acsaem.9b01047
Understanding a New NASICON-Type High Voltage Cathode Material for High-Power Sodium-Ion Batteries.
Chen, M.; Hua, W.; Xiao, J.; Cortie, D.; Guo, X.; Wang, E.; Gu, Q.; Hu, Z.; Indris, S.; Wang, X.; Chou, S.; Dou, S.
2019. Angewandte Chemie / International edition, 59 (6), 2449–2456. doi:10.1002/anie.201912964
Bio-inspired interfaces for easy-to-recycle lithium-ion batteries [in press].
Jin, C.; Yang, Z.; Li, J.; Zheng, Y.; Pfleging, W.; Tang, T.
2019. Extreme mechanics letters, Article no: 100594. doi:10.1016/j.eml.2019.100594
Structural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides.
Hua, W.; Wang, S.; Knapp, M.; Leake, S. J.; Senyshyn, A.; Richter, C.; Yavuz, M.; Binder, J. R.; Grey, C. P.; Ehrenberg, H.; Indris, S.; Schwarz, B.
2019. Nature Communications, 10 (1), Article No.5365. doi:10.1038/s41467-019-13240-z
Composition Modulation of Ionic Liquid Hybrid Electrolyte for 5 V Lithium-Ion Batteries.
Wu, C.-J.; Rath, P. C.; Patra, J.; Bresser, D.; Passerini, S.; Umesh, B.; Dong, Q.-F.; Lee, T.-C.; Chang, J.-K.
2019. ACS applied materials & interfaces, 11 (45), 42049–42056. doi:10.1021/acsami.9b12915
Understanding the Electrode/Electrolyte Interface Layer on the Li-Rich Nickel Manganese Cobalt Layered Oxide Cathode by XPS.
Hekmatfar, M.; Kazzazi, A.; Eshetu, G. G.; Hasa, I.; Passerini, S.
2019. ACS applied materials & interfaces, 11 (46), 43166–43179. doi:10.1021/acsami.9b14389
In Situ Investigation of Layered Oxides with Mixed Structures for Sodium-Ion Batteries.
Keller, M.; Eisenmann, T.; Meira, D.; Aquilanti, G.; Buchholz, D.; Bresser, D.; Passerini, S.
2019. Small methods, 3 (11), Article No.1900239. doi:10.1002/smtd.201900239
Planar lithium: Electrochemical strategies circumventing dendritic lithium growth.
Rehnlund, D.; Ihrfors, C.; Maibach, J.; Nyholm, L.
2019. Materials today, 24, 119–120. doi:10.1016/j.mattod.2019.02.017
Synthesis, Structure, and Electronic Properties of Sn₉O₅Cl₄(CN₂)₂.
Löber, M.; Geißenhöner, C. S.; Ströbele, M.; Indris, S.; Romao, C. P.; Meyer, H.-J.
2019. Inorganic chemistry, 58 (21), 14560–14567. doi:10.1021/acs.inorgchem.9b02229
Mechanism Study of Carbon Coating Effects on Conversion-Type Anode Materials in Lithium-Ion Batteries: Case Study of ZnMn₂O₄ and ZnO–MnO Composites.
Zhao, Z.; Tian, G.; Sarapulova, A.; Melinte, G.; Gómez-Urbano, J. L.; Li, C.; Liu, S.; Welter, E.; Etter, M.; Dsoke, S.
2019. ACS applied materials & interfaces, 11 (33), 29888–29900. doi:10.1021/acsami.9b08539
Immobilization of Polyiodide Redox Species in Porous Carbon for Battery-Like Electrodes in Eco-Friendly Hybrid Electrochemical Capacitors.
Abbas, Q.; Fitzek, H.; Schröttner, H.; Dsoke, S.; Gollas, B.
2019. Nanomaterials, 9 (10), Article No.1413. doi:10.3390/nano9101413
Phase field parameters for battery compounds from first-principles calculations.
Hörmann, N. G.; Groß, A.
2019. Physical review materials, 3 (5), Art. Nr.: 055401. doi:10.1103/PhysRevMaterials.3.055401
Carbonaceous Anodes Derived from Sugarcane Bagasse for Sodium‐Ion Batteries.
Rath, P. C.; Patra, J.; Huang, H.; Bresser, D.; Wu, T.; Chang, J.
2019. ChemSusChem, 12 (10), 2302–2309. doi:10.1002/cssc.201900319
1 m long multilayer-coated deformable piezoelectric bimorph mirror for adjustable focusing of high-energy X-rays.
Sutter, J. P.; Chater, P. A.; Signorato, R.; Keeble, D. S.; Hillman, M. R.; Tucker, M. G.; Alcock, S. G.; Nistea, I.-T.; Wilhelm, H.
2019. Optics express, 27 (11), 16121–16142. doi:10.1364/OE.27.016121
On the homogeneity of high entropy oxides: An investigation at the atomic scale.
Chellali, M. R.; Sarkar, A.; Nandam, S. H.; Bhattacharya, S. S.; Breitung, B.; Hahn, H.; Velasco, L.
2019. Scripta materialia, 166, 58–63. doi:10.1016/j.scriptamat.2019.02.039
Microstructure‐ and Theory‐Based Modeling and Simulation of Batteries and Fuel Cells.
Latz, A.; Danner, T.; Horstmann, B.; Jahnke, T.
2019. Chemie - Ingenieur - Technik, 91 (6), 758–768. doi:10.1002/cite.201800186
Lithium distribution in structured graphite anodes investigated by laser-induced breakdown spectroscopy.
Zheng, Y.; Pfäffl, L.; Seifert, H. J.; Pfleging, W.
2019. Applied Sciences, 9 (20), Article No.4218. doi:10.3390/app9204218
Aprotic and protic ionic liquids combined with olive pits derived hard carbon for potassium-ion batteries.
Arnaiz, M.; Bothe, A.; Dsoke, S.; Balducci, A.; Ajuria, J.
2019. Journal of the Electrochemical Society, 166 (14), A3504-A3510. doi:10.1149/2.1041914jes
Structural Study of Carbon-Coated TiO₂ Anatase Nanoparticles as High-Performance Anode Materials for Na-Ion Batteries.
Greco, G.; Mazzio, K. A.; Dou, X.; Gericke, E.; Wendt, R.; Krumrey, M.; Passerini, S.
2019. ACS applied energy materials, 2 (10), 7142–7151. doi:10.1021/acsaem.9b01101
Design and Tuning of the Electrochemical Properties of Vanadium-Based Cation-Disordered Rock-Salt Oxide Positive Electrode Material for Lithium-Ion Batteries.
Cambaz, M. A.; Vinayan, B. P.; Euchner, H.; Pervez, S. A.; Geßwein, H.; Braun, T.; Gross, A.; Fichtner, M.
2019. ACS applied materials & interfaces, 11 (43), 39848–39858. doi:10.1021/acsami.9b12566
High-Power Na-Ion and K-Ion Hybrid Capacitors Exploiting Cointercalation in Graphite Negative Electrodes.
Liu, X.; Elia, G. A.; Qin, B.; Zhang, H.; Ruschhaupt, P.; Fang, S.; Varzi, A.; Passerini, S.
2019. ACS energy letters, 4, 2675–2682. doi:10.1021/acsenergylett.9b01675
Improved Capacity Retention of SiO-Coated LiNiMnCoO Cathode Material for Lithium-Ion Batteries.
Lu, X.; Zhang, N.; Jahn, M.; Pfleging, W.; Seifert, H. J.
2019. Applied Sciences, 9 (18), 3671. doi:10.3390/app9183671
The electrochemical double layer and its impedance behavior in lithium-ion batteries.
Lück, J.; Latz, A.
2019. Physical chemistry, chemical physics, 21 (27), 14753–14765. doi:10.1039/c9cp01320b
The Role of Intragranular Nanopores in Capacity Fade of Nickel-Rich Layered Li(NiCoMn)O Cathode Materials.
Ahmed, S.; Pokle, A.; Schweidler, S.; Beyer, A.; Bianchini, M.; Walther, F.; Mazilkin, A.; Hartmann, P.; Brezesinski, T.; Janek, J.; Volz, K.
2019. ACS nano, 13 (9), 10694–10704. doi:10.1021/acsnano.9b05047
The ultrafast laser ablation of Li(NiMnCo)O electrodes with high mass loading.
Zhu, P.; Seifert, H. J.; Pfleging, W.
2019. Applied Sciences, 9 (19), Article: 4067. doi:10.3390/app9194067
Na4Co3(PO4)2P2O7 through Correlative Operando X-ray Diffraction and Electrochemical Impedance Spectroscopy.
Zarrabeitia, M.; Jáuregui, M.; Sharma, N.; Pramudita, J. C.; Casas-Cabanas, M.
2019. Chemistry of materials, 31 (14), 5152–5159. doi:10.1021/acs.chemmater.9b01054
There and Back Again—The Journey of LiNiO2 as a Cathode Active Material.
Bianchini, M.; Roca-Ayats, M.; Hartmann, P.; Brezesinski, T.; Janek, J.
2019. Angewandte Chemie / International edition, 58 (31), 10434–10458. doi:10.1002/anie.201812472
Investigation into Mechanical Degradation and Fatigue of High-Ni NCM Cathode Material: A Long-Term Cycling Study of Full Cells.
Schweidler, S.; De Biasi, L.; Garcia, G.; Mazilkin, A.; Hartmann, P.; Brezesinski, T.; Janek, J.
2019. ACS applied energy materials, 2 (10), 7375–7384. doi:10.1021/acsaem.9b01354
Stabilizing capacity retention in NMC811/Graphite full cells via TMSPi electrolyte additives.
Vidal Laveda, J.; Low, J. E.; Pagani, F.; Stilp, E.; Dilger, S.; Baran, V.; Heere, M.; Battaglia, C.
2019. ACS applied energy materials, 2 (10), 7036–7044. doi:10.1021/acsaem.9b00727
Suppressing Dissolution of Vanadium from Cation-Disordered Li₂₋ₓVO₂F via a Concentrated Electrolyte Approach.
Cambaz, M. A.; Vinayan, B. P.; Pervez, S. A.; Johnsen, R. E.; Geßwein, H.; Guda, A. A.; Rusalev, Y. V.; Kinyanjui, M. K.; Kaiser, U.; Fichtner, M.
2019. Chemistry of materials, 31 (19), 7941–7950. doi:10.1021/acs.chemmater.9b02074
Unlocking the potential of fluoride-based solid electrolytes for solid-state lithium batteries.
Feinauer, M.; Euchner, H.; Fichtner, M.; Reddy, M. A.
2019. ACS applied energy materials, 2 (10), 7196–7203. doi:10.1021/acsaem.9b01166
Additives for Cycle Life Improvement of High‐Voltage LNMO‐Based Li‐Ion Cells.
Hofmann, A.; Höweling, A.; Bohn, N.; Müller, M.; Binder, J. R.; Hanemann, T.
2019. ChemElectroChem, 6 (20), 5255–5263. doi:10.1002/celc.201901120
Zinc electrode shape-change in secondary air batteries: A 2D modeling approach.
Schmitt, T.; Arlt, T.; Manke, I.; Latz, A.; Horstmann, B.
2019. Journal of power sources, 432, 119–132. doi:10.1016/j.jpowsour.2019.126649
High-Pressure Sintering of Rhombohedral Cr2S3 Using Titanium–Zirconium–Molybdenum Tools [in press].
Groeneveld, D.; Groß, H.; Hansen, A.-L.; Dankwort, T.; Hansen, J.; Wöllenstein, J.; Bensch, W.; Kienle, L.; König, J.
2019. Advanced engineering materials, 1900430. doi:10.1002/adem.201900430
Charge Transport in Single NCM Cathode Active Material Particles for Lithium-Ion Batteries Studied under Well-Defined Contact Conditions.
Burkhardt, S.; Friedrich, M. S.; Eckhardt, J. K.; Wagner, A. C.; Bohn, N.; Binder, J. R.; Chen, L.; Elm, M. T.; Janek, J.; Klar, P. J.
2019. ACS energy letters, 4 (9), 2117–2123. doi:10.1021/acsenergylett.9b01579
Solvent-Controlled Polymerization of Molecular Strontium Vanadate Monomers into 1D Strontium Vanadium Oxide Chains.
Schwarz, B.; Dürr, M.; Kastner, K.; Heber, N.; Ivanović-Burmazović, I.; Streb, C.
2019. Inorganic chemistry, 58 (17), 11684–11688. doi:10.1021/acs.inorgchem.9b01665
Synthesis and Operando Sodiation Mechanistic Study of Nitrogen‐Doped Porous Carbon Coated Bimetallic Sulfide Hollow Nanocubes as Advanced Sodium Ion Battery Anode [in press].
Lin, X.; Chen, J.; Fan, J.; Ma, Y.; Radjenovic, P.; Xu, Q.; Huang, L.; Passerini, S.; Tian, Z.; Li, J.
2019. Advanced energy materials, 1902312. doi:10.1002/aenm.201902312
Designing a manganese oxide bifunctional air electrode for aqueous chloride-based electrolytes in secondary zinc-air batteries.
Iruin, E.; Mainar, A. R.; Enterría, M.; Ortiz-Vitoriano, N.; Blázquez, J. A.; Colmenares, L. C.; Rojo, T.; Clark, S.; Horstmann, B.
2019. Electrochimica acta, 320, Art. Nr.: 134557. doi:10.1016/j.electacta.2019.134557
Elucidating the Effect of Iron Doping on the Electrochemical Performance of Cobalt‐Free Lithium‐Rich Layered Cathode Materials.
Wu, F.; Kim, G.; Kuenzel, M.; Zhang, H.; Asenbauer, J.; Geiger, D.; Kaiser, U.; Passerini, S.
2019. Advanced energy materials, 9 (43), Article: 1902445. doi:10.1002/aenm.201902445
Influence of phase decomposition on mechanical behavior of an equiatomic CoCuFeMnNi high entropy alloy.
MacDonald, B. E.; Fu, Z.; Wang, X.; Li, Z.; Chen, W.; Zhou, Y.; Raabe, D.; Schoenung, J.; Hahn, H.; Lavernia, E. J.
2019. Acta materialia, 181, 25–35. doi:10.1016/j.actamat.2019.09.030
Superior Lithium Storage Capacity of α‐MnS Nanoparticles Embedded in S‐Doped Carbonaceous Mesoporous Frameworks.
Ma, Y.; Ma, Y.; Kim, G.; Diemant, T.; Behm, R. J.; Geiger, D.; Kaiser, U.; Varzi, A.; Passerini, S.
2019. Advanced energy materials, 9 (43), Article: 1902077. doi:10.1002/aenm.201902077
Improved cycling stability in high-capacity Li-rich vanadium containing disordered rock salt oxyfluoride cathodes.
Baur, C.; Källquist, I.; Chable, J.; Chang, J. H.; Johnsen, R. E.; Ruiz-Zepeda, F.; Ateba Mba, J.-M.; Naylor, A. J.; Garcia-Lastra, J. M.; Vegge, T.; Klein, F.; Schür, A. R.; Norby, P.; Edström, K.; Hahlin, M.; Fichtner, M.
2019. Journal of materials chemistry / A, 7 (37), 21244–21253. doi:10.1039/c9ta06291b
Degradation Mechanisms in Li₂VO₂F Li-Rich Disordered Rock-Salt Cathodes.
Källquist, I.; Naylor, A. J.; Baur, C.; Chable, J.; Kullgren, J.; Fichtner, M.; Edström, K.; Brandell, D.; Hahlin, M.
2019. Chemistry of materials, 31 (16), 6084–6096. doi:10.1021/acs.chemmater.9b00829
Doped nanoscale NMC333 as cathode materials for Li-ion batteries.
Hashem, A. M.; Abdel-Ghany, A. E.; Scheuermann, M.; Indris, S.; Ehrenberg, H.; Mauger, A.; Julien, C. M.
2019. Materials, 12 (18), 2899. doi:10.3390/ma12182899
Operando Studies on the NaNi0.5Ti0.5O₂ Cathode for Na-Ion Batteries: Elucidating Titanium as a Structure Stabilizer.
Maletti, S.; Sarapulova, A.; Schökel, A.; Mikhailova, D.
2019. ACS applied materials & interfaces, 11 (37), 33923–33930. doi:10.1021/acsami.9b10352
Calorimetric studies of mixing enthalpy in the liquid system Ga-Li, and Ga-Li-Sn.
Fels, J.; Berger, P.; Reichmann, T. L.; Seifert, H. J.; Flandorfer, H.
2019. Journal of molecular liquids, 295, Article: 111578. doi:10.1016/j.molliq.2019.111578
A more sustainable and cheaper one‐pot route for the synthesis of hydrophobic ionic liquids for electrolyte applications [in press].
Simonetti, E.; De Francesco, M.; Bellusci, M.; Kim, G.-T.; Wu, F.; Passerini, S.; Appetecchi, G. B.
2019. ChemSusChem. doi:10.1002/cssc.201902054
Pressure-induced tuning of lattice distortion in a high-entropy oxide.
Cheng, B.; Lou, H.; Sarkar, A.; Zeng, Z.; Zhang, F.; Chen, X.; Tan, L.; Prakapenka, V.; Greenberg, E.; Wen, J.; Djenadic, R.; Hahn, H.; Zeng, Q.
2019. Communications chemistry, 2 (1), Art. Nr.: 114. doi:10.1038/s42004-019-0216-2
Indirect state-of-charge determination of all-solid-state battery cells by X-ray diffraction.
Bartsch, T.; Kim, A.-Y.; Strauss, F.; de Biasi, L.; Teo, J. H.; Janek, J.; Hartmann, P.; Brezesinski, T.
2019. Chemical communications, 55 (75), 11223–11226. doi:10.1039/c9cc04453a
Mechanochemistry of metal hydrides: Recent advances.
Huot, J.; Cuevas, F.; Deledda, S.; Edalati, K.; Filinchuk, Y.; Grosdidier, T.; Hauback, B. C.; Heere, M.; Jensen, T. R.; Latroche, M.; Sartori, S.
2019. Materials, 12 (7), 2778. doi:10.3390/ma12172778
Lithium-ion battery temperature on-line estimation based on fast impedance calculation.
Wang, X.; Wei, X.; Chen, Q.; Zhu, J.; Dai, H.
2019. Journal of energy storage, 26, Art. Nr.: 100952. doi:10.1016/j.est.2019.100952
One step: In situ synthesis of ZnS/N and S co-doped carbon composites via salt templating for lithium-ion battery applications.
Ikram, S.; Müller, M.; Dsoke, S.; Rana, U. A.; Sarapulova, A.; Bauer, W.; Siddiqi, H. M.; Szabó, D. V.
2019. New journal of chemistry, 43 (33), 13038–13047. doi:10.1039/c9nj02488c
Calcined chicken eggshell electrode for battery and supercapacitor applications.
Minakshi, M.; Higley, S.; Baur, C.; Mitchell, D. R. G.; Jones, R. T.; Fichtner, M.
2019. RSC Advances, 9 (46), 26981–26995. doi:10.1039/c9ra04289j
Graphene as Vehicle for Ultrafast Lithium Ion Capacitor Development Based on Recycled Olive Pit Derived Carbons.
Ajuria, J.; Zarrabeitia, M.; Arnaiz, M.; Urra, O.; Rojo, T.; Goikolea, E.
2019. Journal of the Electrochemical Society, 166 (13), A2840–A2848. doi:10.1149/2.0361913jes
Toward Stable Electrode/Electrolyte Interface of P2-Layered Oxide for Rechargeable Na-Ion Batteries.
Zarrabeitia, M.; Gomes Chagas, L.; Kuenzel, M.; Gonzalo, E.; Rojo, T.; Passerini, S.; Muñoz-Márquez, M. Á.
2019. ACS applied materials & interfaces, 11, 28885–28893. doi:10.1021/acsami.9b07963
Revealing the Mechanism of Multiwalled Carbon Nanotube Growth on Supported Nickel Nanoparticles by in Situ Synchrotron X-ray Diffraction, Density Functional Theory, and Molecular Dynamics Simulations.
Gili, A.; Schlicker, L.; Bekheet, M. F.; Görke, O.; Kober, D.; Simon, U.; Littlewood, P.; Schomäcker, R.; Doran, A.; Gaissmaier, D.; Jacob, T.; Selve, S.; Gurlo, A.
2019. ACS catalysis, 9 (8), 6999–7011. doi:10.1021/acscatal.9b00733
Tuning the performance of vanadium redox flow batteries by modifying the structural defects of the carbon felt electrode.
Dixon, D.; Babu, D. J.; Bhaskar, A.; Bruns, H.-M.; Schneider, J. J.; Scheiba, F.; Ehrenberg, H.
2019. Beilstein journal of nanotechnology, 10, 1698–1706. doi:10.3762/bjnano.10.165
Multi-anionic and -cationic compounds: new high entropy materials for advanced Li-ion batteries.
Wang, Q.; Sarkar, A.; Wang, D.; Velasco, L.; Azmi, R.; Bhattacharya, S. S.; Bergfeldt, T.; Düvel, A.; Heitjans, P.; Brezesinski, T.; Hahn, H.; Breitung, B.
2019. Energy & environmental science, 12 (8), 2433–2442. doi:10.1039/c9ee00368a
Interaction between Li, Ultrathin Adsorbed Ionic Liquid Films, and CoO(111) Thin Films: A Model Study of the Solid|Electrolyte Interphase Formation.
Buchner, F.; Forster-Tonigold, K.; Kim, J.; Bansmann, J.; Groß, A.; Behm, R. J.
2019. Chemistry of materials, 31 (15), 5537–5549. doi:10.1021/acs.chemmater.9b01253
Decoupling segmental relaxation and ionic conductivity for lithium-ion polymer electrolytes.
Bresser, D.; Lyonnard, S.; Iojoiu, C.; Picard, L.; Passerini, S.
2019. Molecular systems design & engineering, 4 (4), 779–792. doi:10.1039/c9me00038k
Ultra-thick battery electrodes for high gravimetric and volumetric energy density Li-ion batteries.
Sotomayor, M. E.; Torre-Gamarra, C. D. L.; Levenfeld, B.; Sanchez, J.-Y.; Varez, A.; Kim, G.-T.; Varzi, A.; Passerini, S.
2019. Journal of power sources, 437, Art.-Nr.: 226923. doi:10.1016/j.jpowsour.2019.226923
FOBSS: Monitoring data from a modular battery system.
Steinbuss, G.; Rzepka, B.; Bischof, S.; Blank, T.; Böhm, K.
2019. Proceedings of the Tenth ACM International Conference on Future Energy Systems - e-Energy ’19, Phoenix, AZ, USA, June 25 - 28, 2019, 456–459, ACM, New York (NY). doi:10.1145/3307772.3331020
Study on boron and nitrogen co-doped graphene xerogel for high-performance electrosorption application.
Wang, S.; Feng, J.; Meng, Q.; Cao, B.; Tian, G.
2019. Journal of solid state electrochemistry, 23, 2377–2390. doi:10.1007/s10008-019-04336-z
General π-Electron-Assisted Strategy for Ir, Pt, Ru, Pd, Fe, Ni Single-Atom Electrocatalysts with Bifunctional Active Sites for Highly Efficient Water Splitting.
Lai, W.-H.; Zhang, L.-F.; Hua, W.-B.; Indris, S.; Yan, Z.-C.; Hu, Z.; Zhang, B.; Liu, Y.; Wang, L.; Liu, M.; Liu, R.; Wang, Y.-X.; Wang, J.-Z.; Hu, Z.; Liu, H.-K.; Chou, S.-L.; Dou, S.-X.
2019. Angewandte Chemie / International edition, 58 (34), 11868–11873. doi:10.1002/anie.201904614
In Operando analysis of the charge storage mechanism in a conversion ZnCo₂O₄ anode and the application in flexible Li-ion batteries.
Zhao, Z.; Tian, G.; Trouillet, V.; Zhu, L.; Zhu, J.; Missiul, A.; Welter, E.; Dsoke, S.
2019. Inorganic chemistry frontiers, 6 (7), 1861–1872. doi:10.1039/c9qi00356h
Probing a battery electrolyte drop with ambient pressure photoelectron spectroscopy.
Maibach, J.; Källquist, I.; Andersson, M.; Urpelainen, S.; Edström, K.; Rensmo, H.; Siegbahn, H.; Hahlin, M.
2019. Nature Communications, 10 (1), Art.Nr.: 3080. doi:10.1038/s41467-019-10803-y
The Effect of Temporal Aggregation on Battery Sizing for Peak Shaving.
Werle, D.; Warzel, D.; Bischof, S.; Koziolek, A.; Trittenbach, H.; Böhm, K.
2019. Tenth ACM International Conference on Future Energy Systems (ACM e-Energy) and its co-located workshops, Phoenix, AZ, United States, 25th - 28th of June 2019, 482–485, ACM, New York (NY). doi:10.1145/3307772.3331023
Interface in Solid-State Lithium Battery: Challenges, Progress, and Outlook.
Pervez, S. A.; Cambaz, M. A.; Thangadurai, V.; Fichtner, M.
2019. ACS applied materials & interfaces, 11 (25), 22029–22050. doi:10.1021/acsami.9b02675
Development and application of phase diagrams for Li-ion batteries using CALPHAD approach.
Li, N.; Li, D.; Zhang, W.; Chang, K.; Dang, F.; Du, Y.; Seifert, H. J.
2019. Progress in natural science: materials international, 29 (3), 265–276. doi:10.1016/j.pnsc.2019.05.007
GaAs Diode Rectifier Power Module in mixed Ag-and Large Area Cu-Sintering Technology for Ultra-Fast and Wireless Electric Vehicle Battery Charging.
Blank, T.; Dudek, V.; Luh, M.; An, B. N.; Wurst, H.; Leyrer, B.; Ishikawa, D.; Weber, M.
2019. 2019 International Conference on Electronics Packaging, ICEP 2019; Toki Messe Niigata Convention CenterNiigata; Japan; 17 April 2019 through 20 April 2019, 92–97, IEEE, New York (NY). doi:10.23919/ICEP.2019.8733484
Analysis of Bonding Interfaces of Pressureless-sintered Cu on Metallization Layers.
Ishikawa, D.; An, B. N.; Mail, M.; Wurst, H.; Leyrer, B.; Blank, T.; Weber, M.; Ueda, S.; Nakako, H.; Kawana, Y.
2019. 2019 International Conference on Electronics Packaging, ICEP 2019; Toki Messe Niigata Convention CenterNiigata; Japan; 17 April 2019 through 20 April 2019, 167–172, IEEE, New York (NY). doi:10.23919/ICEP.2019.8733521
Role of Manganese in Lithium- and Manganese-Rich Layered Oxides Cathodes.
Simonelli, L.; Sorrentino, A.; Marini, C.; Ramanan, N.; Heinis, D.; Olszewski, W.; Mullaliu, A.; Birrozzi, A.; Laszczynski, N.; Giorgetti, M.; Passerini, S.; Tonti, D.
2019. The journal of physical chemistry letters, 10 (12), 3359–3368. doi:10.1021/acs.jpclett.9b01174
Non-linear kinetics of the lithium-solid polymer electrolyte interface.
Blume, L.; Sauter, U.; Jacob, T.
2019. Electrochimica acta, 318, 551–559. doi:10.1016/j.electacta.2019.06.070
Hetero-layered MoS2/C composites enabling ultrafast and durable Na storage [in press].
Li, Z.; Liu, S.; Vinayan, B. P.; Zhao-Karger, Z.; Diemant, T.; Wang, K.; Behm, R. J.; Kübel, C.; Klingeler, R.; Fichtner, M.
2019. Energy storage materials. doi:10.1016/j.ensm.2019.05.042
Oxygen Activity in Li-Rich Disordered Rock-Salt Oxide and the Influence of LiNbO3 Surface Modification on the Electrochemical Performance.
Cambaz, M. A.; Vinayan, B. P.; Geßwein, H.; Schiele, A.; Sarapuolva, A.; Diemant, T.; Mazilkin, A.; Brezesinski, T.; Behm, R. J.; Ehrenberg, H.; Fichtner, M.
2019. Chemistry of materials, 31 (12), 4330–4340. doi:10.1021/acs.chemmater.8b04504
Synthesis, structural and morphological characterizations of nano-Ru-based perovskites/RGO composites.
Galal, A.; Hassan, H. K.; Atta, N. F.; Abdel-Mageed, A. M.; Jacob, T.
2019. Scientific reports, 9 (1), Art. Nr.: 7948. doi:10.1038/s41598-019-43726-1
3D silicon/graphite composite electrodes for high-energy lithium-ion batteries.
Zheng, Y.; Seifert, H. J.; Shi, H.; Zhang, Y.; Kübel, C.; Pfleging, W.
2019. Electrochimica acta, 317, 502–508. doi:10.1016/j.electacta.2019.05.064
Modular development of metal oxide/carbon composites for electrochemical energy conversion and storage.
Ji, Y.; Ma, Y.; Liu, R.; Ma, Y.; Cao, K.; Kaiser, U.; Varzi, A.; Song, Y.-F.; Passerini, S.; Streb, C.
2019. Journal of materials chemistry / A, 7 (21), 13096–13102. doi:10.1039/c9ta03498f
Characterization of hierarchically structured electrodes with different thicknesses by means of experiments and image analysis.
Neumann, M.; Wagner, A.; Bohn, N.; Osenberg, M.; Hilger, A.; Manke, I.; Binder, J. R.; Schmidt, V.
2019. Materials characterization, 155, 109778. doi:10.1016/j.matchar.2019.06.020
Assessment of a scheduling strategy for dispatching prosumption of an industrial campus.
Remo Appino, R.; Ángel González Ordiano, J.; Munze, N.; Mikut, R.; Faulwasser, T.; Hagenmeyer, V.
2019. Internationaler ETG-Kongress 2019 : das Gesamtsystem im Fokus der Energiewende, 8. – 9. Mai 2019, Neckar Forum, Esslingen am Neckar. Hrsg.: C. Rehtanz, 289–294, VDE-Verl., Berlin
Synthesis and electrochemical properties of rGO/polypyrrole/ferrites nanocomposites obtained via a hydrothermal route for hybrid aqueous supercapacitors.
Mariappan, C. R.; Gajraj, V.; Gade, S.; Kumar, A.; Dsoke, S.; Indris, S.; Ehrenberg, H.; Prakash, G. V.; Jose, R.
2019. Journal of electroanalytical chemistry, 845, 72–83. doi:10.1016/j.jelechem.2019.05.031
Effects of pH control by acid addition at the aqueous processing of cathodes for lithium ion batteries.
Bauer, W.; Çetinel, F. A.; Müller, M.; Kaufmann, U.
2019. Electrochimica acta, 317, 112–119. doi:10.1016/j.electacta.2019.05.141
A state of health estimation method for lithium-ion batteries based on voltage relaxation model.
Fang, Q.; Wei, X.; Lu, T.; Dai, H.; Zhu, J.
2019. Energies, 12 (7), Art.-Nr.: 1349. doi:10.3390/en12071349
In operando studies of rotating prismatic Li-ion batteries using monochromatic wide-angle neutron diffraction.
Baran, V.; Mühlbauer, M. J.; Schulz, M.; Pfanzelt, J.; Senyshyn, A.
2019. Journal of energy storage, 24, Art.-Nr.: 100772. doi:10.1016/j.est.2019.100772
Improved DFT Adsorption Energies with Semiempirical Dispersion Corrections.
Mahlberg, D.; Sakong, S.; Forster-Tonigold, K.; Groß, A.
2019. Journal of chemical theory and computation, 15 (5), 3250–3259. doi:10.1021/acs.jctc.9b00035
Unlocking Simultaneously the Temperature and Electrochemical Windows of Aqueous Phthalocyanine Electrolytes.
Huang, Z.; Zhang, P.; Gao, X.; Henkensmeier, D.; Passerini, S.; Chen, R.
2019. ACS applied energy materials, 2 (5), 3773–3779. doi:10.1021/acsaem.9b00467
Silica-Templated Covalent Organic Framework-Derived Fe-N-Doped Mesoporous Carbon as Oxygen Reduction Electrocatalyst.
Zhao, X.; Pachfule, P.; Li, S.; Langenhahn, T.; Ye, M.; Tian, G.; Schmidt, J.; Thomas, A.
2019. Chemistry of materials, 31 (9), 3274–3280. doi:10.1021/acs.chemmater.9b00204
Revisiting the Electrochemical Lithiation Mechanism of Aluminum and the Role of Li-rich Phases (Li 1+x Al) on Capacity Fading [in press].
Qin, B.; Diemant, T.; Zhang, H.; Hoefling, A.; Behm, R. J.; Tübke, J.; Varzi, A.; Passerini, S.
2019. ChemSusChem. doi:10.1002/cssc.201900597
Structural and magnetic properties of Ce 1−x Sm x Fe 11−y Ti 1 V y.
Simon, D.; Wuest, H.; Hinderberger, S.; Koehler, T.; Marusczyk, A.; Sawatzki, S.; Diop, L. V. B.; Skokov, K.; Maccari, F.; Senyshyn, A.; Ehrenberg, H.; Gutfleisch, O.
2019. Acta materialia, 172, 131–138. doi:10.1016/j.actamat.2019.04.006
A combined optimisation and decision-making approach for battery-supported HMGS [in press].
Marcelino, C.; Baumann, M.; Carvalho, L.; Chibeles-Martins, N.; Weil, M.; Almeida, P.; Wanner, E.
2019. Journal of the Operational Research Society. doi:10.1080/01605682.2019.1582590
Efficiency and Quality Issues in the Production of Black Phosphorus by Mechanochemical Synthesis: A Multi-Technique Approach.
Ferrara, C.; Vigo, E.; Albini, B.; Galinetto, P.; Milanese, C.; Tealdi, C.; Quartarone, E.; Passerini, S.; Mustarelli, P.
2019. ACS applied energy materials, 2 (4), 2794–2802. doi:10.1021/acsaem.9b00132
Glyme-Based Electrolyte for Na/Bilayered-V 2 O 5 Batteries.
Liu, X.; Qin, B.; Zhang, H.; Moretti, A.; Passerini, S.
2019. ACS applied energy materials, 2 (4), 2786–2793. doi:10.1021/acsaem.9b00128
An improved electro-thermal battery model complemented by current dependent parameters for vehicular low temperature application.
Zhu, J.; Knapp, M.; Darma, M. S. D.; Fang, Q.; Wang, X.; Dai, H.; Wei, X.; Ehrenberg, H.
2019. Applied energy, 248, 149–161. doi:10.1016/j.apenergy.2019.04.066
Biphenyl-Bridged Organosilica as a Precursor for Mesoporous Silicon Oxycarbide and Its Application in Lithium and Sodium Ion Batteries.
Weinberger, M.; Su, P.-H.; Peterlik, H.; Lindén, M.; Wohlfahrt-Mehrens, M.
2019. Nanomaterials, 9 (5), Article: 754. doi:10.3390/nano9050754
MgScSe - A Magnesium Solid Ionic Conductor for All-Solid-State Mg Batteries?.
Wang, L.-P.; Zhao-Karger, Z.; Klein, F.; Chable, J.; Braun, T.; Schür, A. R.; Wang, C.-R.; Guo, Y.-G.; Fichtner, M.
2019. ChemSusChem, 12 (10), 2286–2293. doi:10.1002/cssc.201900225
Tribological and anticorrosion behavior of self-healing coating containing nanocapsules.
Sun, J.; Wang, Y.; Li, N.; Tian, L.
2019. Tribology international, 136, 332–341. doi:10.1016/j.triboint.2019.03.062
Stabilization of Highly Conductive Lithium Argyrodites by Means of Lithium Substitution: The Case of LiFePS .
Schneider, H.; Sedlmaier, S. J.; Du, H.; Kelley, T.; Leitner, K.; Maat, J. ter; Scordilis-Kelley, C.; Mudalige, A.; Kulisch, J.; Schneider, L.
2019. ChemistrySelect, 4 (12), 3351–3354. doi:10.1002/slct.201803388
A Post-Mortem Study of Stacked 16 Ah Graphite//LiFePO₄ Pouch Cells Cycled at 5 °C.
Moretti, A.; Carvalho, D. V.; Ehteshami, N.; Paillard, E.; Porcher, W.; Brun-Buisson, D.; Ducros, J.-B.; de Meatza, I.; Eguia-Barrio, A.; Trad, K.; Passerini, S.
2019. Batteries, 5 (2), Article: 45. doi:10.3390/batteries5020045
Dielectric relaxation behavior induced by lithium migration in LiTiO spinel.
Ren, S.; Liu, J.; Wang, D.; Zhang, J.; Ma, X.; Knapp, M.; Liu, L.; Ehrenberg, H.
2019. Journal of alloys and compounds, 793, 678–685. doi:10.1016/j.jallcom.2019.04.216
Amorphous Lithium Sulfide as Lithium-Sulfur Battery Cathode with Low Activation Barrier.
Lodovico, L.; Milad Hosseini, S.; Varzi, A.; Passerini, S.
2019. Energy technology, Art.-Nr.: 1801013. doi:10.1002/ente.201801013
Phase Transformation Behavior and Stability of LiNiO Cathode Material for Li-Ion Batteries Obtained from In Situ Gas Analysis and Operando X-Ray Diffraction.
de Biasi, L.; Schiele, A.; Roca‐Ayats, M.; Garcia, G.; Brezesinski, T.; Hartmann, P.; Janek, J.
2019. ChemSusChem, 12 (10), 2240–2250. doi:10.1002/cssc.201900032
Can Metallic Sodium Electrodes Affect the Electrochemistry of Sodium‐Ion Batteries? Reactivity Issues and Perspectives.
Pfeifer, K.; Arnold, S.; Becherer, J.; Das, C.; Maibach, J.; Ehrenberg, H.; Dsoke, S.
2019. ChemSusChem, 12 (14), 3312–3319. doi:10.1002/cssc.201901056
In Situ SEM Observation of Structured Si/C Anodes Reactions in an Ionic-Liquid-Based Lithium-Ion Battery.
Shi, H.; Liu, X.; Wu, R.; Zheng, Y.; Li, Y.; Cheng, X.; Pfleging, W.; Zhang, Y.
2019. Applied Sciences, 9 (5), Article no: 956. doi:10.3390/app9050956
Exploring the Economic Potential of Sodium-Ion Batteries.
Peters, J.; Peña Cruz, A.; Weil, M.
2019. Batteries, 5 (1), Article: 10. doi:10.3390/batteries5010010
Electrochemical Lithium Extraction and Insertion Process of Sol-Gel Synthesized LiMnPO₄ via Two-Phase Mechanism.
Esmezjan, L.; Mikhailova, D.; Etter, M.; Cabana, J.; Grey, C. P.; Indris, S.; Ehrenberg, H.
2019. Journal of the Electrochemical Society, 166 (6), A1257–A1265. doi:10.1149/2.1311906jes
Amorphous versus Crystalline Li₃PS₄: Local Structural Changes during Synthesis and Li Ion Mobility.
Stöffler, H.; Zinkevich, T.; Yavuz, M.; Hansen, A.-L.; Knapp, M.; Bednarčík, J.; Randau, S.; Richter, F. H.; Janek, J.; Ehrenberg, H.; Indris, S.
2019. The journal of physical chemistry <Washington, DC> / C, 123 (16), 10280–10290. doi:10.1021/acs.jpcc.9b01425
Understanding the Li-ion storage mechanism in a carbon composited zinc sulfide electrode.
Tian, G.; Zhao, Z.; Sarapulova, A.; Das, C.; Zhu, L.; Liu, S.; Missiul, A.; Welter, E.; Maibach, J.; Dsoke, S.
2019. Journal of materials chemistry / A, 7 (26), 15640–15653. doi:10.1039/c9ta01382b
Co₉S₈@carbon yolk-shell nanocages as a high performance direct conversion anode material for sodium ion batteries.
Zhao, Y.; Fu, Q.; Wang, D.; Pang, Q.; Gao, Y.; Missiul, A.; Nemausat, R.; Sarapulova, A.; Ehrenberg, H.; Wei, Y.; Chen, G.
2019. Energy storage materials, 18, 51–58. doi:10.1016/j.ensm.2018.09.005
Effect of Low-Temperature Al2O3 ALD Coating on Ni-Rich Layered Oxide Composite Cathode on the Long-Term Cycling Performance of Lithium-Ion Batteries.
Neudeck, S.; Mazilkin, A.; Reitz, C.; Hartmann, P.; Janek, J.; Brezesinski, T.
2019. Scientific reports, 9 (1), 5328. doi:10.1038/s41598-019-41767-0
High‐Performance Ferroelectric–Dielectric Multilayered Thin Films for Energy Storage Capacitors.
Silva, J. P. B.; Silva, J. M. B.; Oliveira, M. J. S.; Weingärtner, T.; Sekhar, K. C.; Pereira, M.; Gomes, M. J. M.
2019. Advanced functional materials, 29 (6), Article: 1807196. doi:10.1002/adfm.201807196
Laser-induced breakdown spectroscopy for the quantitative measurement of lithium concentration profiles in structured and unstructured electrodes.
Smyrek, P.; Bergfeldt, T.; Seifert, H. J.; Pfleging, W.
2019. Journal of materials chemistry / A, 7 (10), 5656–5665. doi:10.1039/C8TA10328C
Editors’ Choice—Understanding Chemical Stability Issues between Different Solid Electrolytes in All-Solid-State Batteries.
Riphaus, N.; Stiaszny, B.; Beyer, H.; Indris, S.; Gasteiger, H. A.; Sedlmaier, S. J.
2019. Journal of the Electrochemical Society, 166 (6), A975–A983. doi:10.1149/2.0351906jes
Hierarchical MoS 2-carbon porous nanorods towards atomic interfacial engineering for high-performance lithium storage.
Li, Z.; Ottmann, A.; Sun, Q.; Kast, A. K.; Wang, K.; Zhang, T.; Meyer, H.-P.; Backes, C.; Kübel, C.; Schröder, R. R.; Xiang, J.; Vaynzof, Y.; Klingeler, R.
2019. Journal of materials chemistry / A, 7 (13), 7553–7564. doi:10.1039/c8ta12293h
Review on multi-scale models of solid-electrolyte interphase formation.
Horstmann, B.; Single, F.; Latz, A.
2019. Current opinion in electrochemistry, 13, 61–69. doi:10.1016/j.coelec.2018.10.013
Electrolytes based on N-Butyl-N-Methyl-Pyrrolidinium 4,5-Dicyano-2-(Trifluoromethyl) Imidazole for High Voltage Electrochemical Double Layer Capacitors.
Scalia, A.; Varzi, A.; Moretti, A.; Ruschhaupt, P.; Lamberti, A.; Tresso, E.; Passerini, S.
2019. ChemElectroChem, 6 (2), 552–557. doi:10.1002/celc.201801172
High-Entropy Oxides: Fundamental Aspects and Electrochemical Properties.
Sarkar, A.; Wang, Q.; Schiele, A.; Chellali, M. R.; Bhattacharya, S. S.; Wang, D.; Brezesinski, T.; Hahn, H.; Velasco, L.; Breitung, B.
2019. Advanced materials, 1806236. doi:10.1002/adma.201806236
NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density.
Chen, M.; Hua, W.; Xiao, J.; Cortie, D.; Chen, W.; Wang, E.; Hu, Z.; Gu, Q.; Wang, X.; Indris, S.; Chou, S.-L.; Dou, S.-X.
2019. Nature Communications, 10 (1), Article: 1480. doi:10.1038/s41467-019-09170-5
Electromigration in Lithium Whisker Formation Plays Insignificant Role during Electroplating.
Rulev, A. A.; Sergeev, A. V.; Yashina, L. V.; Jacob, T.; Itkis, D. M.
2019. ChemElectroChem, 6 (5), 1324–1328. doi:10.1002/celc.201801652
Toward an Atomic-Scale Understanding of Electrochemical Interface Structure and Dynamics.
Magnussen, O. M.; Groß, A.
2019. Journal of the American Chemical Society, 141 (12), 4777–4790. doi:10.1021/jacs.8b13188
Single-Ion Conducting Electrolyte Based on Electrospun Nanofibers for High-Performance Lithium Batteries.
Li, C.; Qin, B.; Zhang, Y.; Varzi, A.; Passerini, S.; Wang, J.; Dong, J.; Zeng, D.; Liu, Z.; Cheng, H.
2019. Advanced energy materials, 9 (10), 1803422. doi:10.1002/aenm.201803422
Kondo-like phonon scattering in thermoelectric clathrates.
Ikeda, M. S.; Euchner, H.; Yan, X.; Tomeš, P.; Prokofiev, A.; Prochaska, L.; Lientschnig, G.; Svagera, R.; Hartmann, S.; Gati, E.; Lang, M.; Paschen, S.
2019. Nature Communications, 10 (1), Article number: 887. doi:10.1038/s41467-019-08685-1
Modelling the electric double layer at electrode/electrolyte interfaces.
Groß, A.; Sakong, S.
2019. Current opinion in electrochemistry, 14, 1–6. doi:10.1016/j.coelec.2018.09.005
Prototype rechargeable magnesium batteries using ionic liquid electrolytes.
Gao, X.; Mariani, A.; Jeong, S.; Liu, X.; Dou, X.; Ding, M.; Moretti, A.; Passerini, S.
2019. Journal of power sources, 423, 52–59. doi:10.1016/j.jpowsour.2019.03.049
Modular Design of Noble-Metal-Free Mixed Metal Oxide Electrocatalysts for Complete Water Splitting.
Gao, D.; Liu, R.; Biskupek, J.; Kaiser, U.; Song, Y.-F.; Streb, C.
2019. Angewandte Chemie / International edition, 58 (14), 4644–4648. doi:10.1002/anie.201900428
Investigation of the temperature dependence of lithium plating onset conditions in commercial Li-ion batteries.
Angeles Cabañero, M.; Altmann, J.; Gold, L.; Boaretto, N.; Müller, J.; Hein, S.; Zausch, J.; Kallo, J.; Latz, A.
2019. Energy, 171, 1217–1228. doi:10.1016/j.energy.2019.01.017
Are Functional Groups Beneficial or Harmful on the Electrochemical Performance of Activated Carbon Electrodes?.
Ding, Z.; Trouillet, V.; Dsoke, S.
2019. Journal of the Electrochemical Society, 166 (6), A1004–A1014. doi:10.1149/2.0451906jes
New Organic Electrode Materials for Ultrafast Electrochemical Energy Storage.
Zhao-Karger, Z.; Gao, P.; Ebert, T.; Klyatskaya, S.; Chen, Z.; Ruben, M.; Fichtner, M.
2019. Advanced materials, 31 (26), Article: 1806599. doi:10.1002/adma.201806599
Laminated Lithium Ion Batteries with improved fast charging capability.
Frankenberger, M.; Singh, M.; Dinter, A.; Jankowksy, S.; Schmidt, A.; Pettinger, K.-H.
2019. Journal of electroanalytical chemistry, 837, 151–158. doi:10.1016/j.jelechem.2019.02.030
NiTiOPO phosphate: Sodium insertion mechanism and electrochemical performance in sodium-ion batteries.
Nassiri, A.; Sabi, N.; Sarapulova, A.; Dahbi, M.; Indris, S.; Ehrenberg, H.; Saadoune, I.
2019. Journal of power sources, 418, 211–217. doi:10.1016/j.jpowsour.2019.02.038
Room temperature, liquid-phase Al 2 O 3 surface coating approach for Ni-rich layered oxide cathode material.
Neudeck, S.; Strauss, F.; Garcia, G.; Wolf, H.; Janek, J.; Hartmann, P.; Brezesinski, T.
2019. Chemical communications, 55 (15), 2174–2177. doi:10.1039/c8cc09618j
In Operando Synchrotron Diffraction and in Operando X-ray Absorption Spectroscopy Investigations of Orthorhombic V 2 O 5 Nanowires as Cathode Materials for Mg-Ion Batteries.
Fu, Q.; Sarapulova, A.; Trouillet, V.; Zhu, L.; Fauth, F.; Mangold, S.; Welter, E.; Indris, S.; Knapp, M.; Dsoke, S.; Bramnik, N.; Ehrenberg, H.
2019. Journal of the American Chemical Society, 141 (6), 2305–2315. doi:10.1021/jacs.8b08998
Unlocking the potential of weberite-type metal fluorides in electrochemical energy storage.
Euchner, H.; Clemens, O.; Reddy, M. A.
2019. npj computational materials, 5, Article number: 31. doi:10.1038/s41524-019-0166-3
High entropy oxides as anode material for Li-ion battery applications: A practical approach.
Wang, Q.; Sarkar, A.; Li, Z.; Lu, Y.; Velasco, L.; Bhattacharya, S. S.; Brezesinski, T.; Hahn, H.; Breitung, B.
2019. Electrochemistry communications, 100, 121–125. doi:10.1016/j.elecom.2019.02.001
Lithium/Oxygen Incorporation and Microstructural Evolution during Synthesis of Li-Rich Layered Li[LiNiMn]O Oxides.
Hua, W.; Chen, M.; Schwarz, B.; Knapp, M.; Bruns, M.; Barthel, J.; Yang, X.; Sigel, F.; Azmi, R.; Senyshyn, A.; Missiul, A.; Simonelli, L.; Etter, M.; Wang, S.; Mu, X.; Fiedler, A.; Binder, J. R.; Guo, X.; Chou, S.; Zhong, B.; Indris, S.; Ehrenberg, H.
2019. Advanced energy materials, 9 (8), Article: 1803094. doi:10.1002/aenm.201803094
A finite strain electro-chemo-mechanical theory for ion transport with application to binary solid electrolytes.
Ganser, M.; Hildebrand, F. E.; Kamlah, M.; McMeeking, R. M.
2019. Journal of the mechanics and physics of solids, 125, 681–713. doi:10.1016/j.jmps.2019.01.004
Development and characterization of half-cells based on thin solid state ionic conductors for Li-ion batteries.
Schiffmann, N.; Schröckert, F.; Bucharsky, E. C.; Schell, K. G.; Hoffmann, M. J.
2019. Solid state ionics, 333, 66–71. doi:10.1016/j.ssi.2019.01.020
Unveiling the Reaction Mechanism during Li Uptake and Release of Nanosized “NiFeMnO4”: Operando X-ray Absorption, X-ray Diffraction, and Pair Distribution Function Investigations.
Permien, S.; Hansen, A.-L.; van Dinter, J.; Indris, S.; Neubüser, G.; Kienle, L.; Doyle, S.; Mangold, S.; Bensch, W.
2019. ACS omega, 4 (1), 2398–2409. doi:10.1021/acsomega.8b03276
Calcium vanadate sub-microfibers as highly reversible host cathode material for aqueous zinc-ion batteries.
Liu, X.; Zhang, H.; Geiger, D.; Han, J.; Varzi, A.; Kaiser, U.; Moretti, A.; Passerini, S.
2019. Chemical communications, 55, 2265–2268. doi:10.1039/C8CC07243D
O2 reduction on a Au film electrode in an ionic liquid in the absence and presence of Mg2+ ions: Product formation and adlayer dynamics.
Jusys, Z.; Schnaidt, J.; Behm, R. J.
2019. The journal of chemical physics, 150 (4), Art. Nr.: 041724. doi:10.1063/1.5051982
Functionalization of multi-walled carbon nanotubes with indazole.
Jurzinsky, T.; Gomez-Villa, E. D.; Kübler, M.; Bruns, M.; Elsässer, P.; Melke, J.; Scheiba, F.; Cremers, C.
2019. Electrochimica acta, 298, 884–892. doi:10.1016/j.electacta.2018.12.138
Exploring SnS nanoparticles interpenetrated with high concentration nitrogen-doped-carbon as anodes for sodium ion batteries.
Qin, B.; Zhang, H.; Diemant, T.; Dou, X.; Geiger, D.; Behm, R. J.; Kaiser, U.; Varzi, A.; Passerini, S.
2019. Electrochimica acta, 296, 806–813. doi:10.1016/j.electacta.2018.11.112
Insights into Phase Transformations and Degradation Mechanisms in Aluminum Anodes for Lithium-Ion Batteries.
Tahmasebi, M. H.; Kramer, D.; Mönig, R.; Boles, S. T.
2019. Journal of the Electrochemical Society, 166 (3), A5001–A5007. doi:10.1149/2.0011903jes
Polymerizable Ionic Liquids for Solid-State Polymer Electrolytes.
Löwe, R.; Hanemann, T.; Hofmann, A.
2019. Molecules, 24 (2), Article: 324. doi:10.3390/molecules24020324
First principles studies of self-diffusion processes on metallic lithium surfaces.
Gaissmaier, D.; Fantauzzi, D.; Jacob, T.
2019. The journal of chemical physics, 150 (4), 041723. doi:10.1063/1.5056226
Homogeneous visible light-driven hydrogen evolution by the molecular molybdenum sulfide model [Mo2S12]2-.
Rajagopal, A.; Venter, F.; Jacob, T.; Petermann, L.; Rau, S.; Tschierlei, S.; Streb, C.
2019. Sustainable energy & fuels, 3 (1), 92–95. doi:10.1039/c8se00346g
Room temperature ionic liquid (RTIL)-based electrolyte cocktails for safe, high working potential Li-based polymer batteries.
Nair, J. R.; Colò, F.; Kazzazi, A.; Moreno, M.; Bresser, D.; Lin, R.; Bella, F.; Meligrana, G.; Fantini, S.; Simonetti, E.; Appetecchi, G. B.; Passerini, S.; Gerbaldi, C.
2019. Journal of power sources, 412, 398–407. doi:10.1016/j.jpowsour.2018.11.061
Energy and cost-efficient nano-Ru-based perovskites/RGO composites for application in high performance supercapacitors.
Galal, A.; Hassan, H. K.; Atta, N. F.; Jacob, T.
2019. Journal of colloid and interface science, 538, 578–586. doi:10.1016/j.jcis.2018.12.018
Enabling Reversible (De)Lithiation of Aluminum by using Bis(fluorosulfonyl)imide-Based Electrolytes.
Qin, B.; Jeong, S.; Zhang, H.; Ulissi, U.; Vieira Carvalho, D.; Varzi, A.; Passerini, S.
2019. ChemSusChem, 12 (1), 208–2012. doi:10.1002/cssc.201801806
Electrodeposition of Ag onto Au(111) from Deep Eutectic Solvents.
Ceblin, M. U.; Zeller, S.; Schick, B.; Kibler, L. A.; Jacob, T.
2019. ChemElectroChem, 6 (1), 141–146. doi:10.1002/celc.201801192
Development of an all-solid-state lithium battery by slurry-coating procedures using a sulfidic electrolyte.
Ates, T.; Keller, M.; Kulisch, J.; Adermann, T.; Passerini, S.
2019. Energy storage materials, 17, 204–210. doi:10.1016/j.ensm.2018.11.011
Rational design and synthesis of advanced Na3·32Fe2·34(P2O7)2 cathode with multiple-dimensional N-doped carbon matrix.
Liu, Y.; Wang, E.; Rajagopalan, R.; Hua, W.; Zhong, B.; Zhong, Y.; Wu, Z.; Guo, X.; Dou, S.; Li, J.
2019. Journal of power sources, 412, 350–358. doi:10.1016/j.jpowsour.2018.11.038
Study of the Na Storage Mechanism in Silicon Oxycarbide-Evidence for Reversible Silicon Redox Activity.
Dou, X.; Buchholz, D.; Weinberger, M.; Diemant, T.; Kaus, M.; Indris, S.; Behm, R. J.; Wohlfahrt-Mehrens, M.; Passerini, S.
2019. Small methods, 3 (4), Article: 1800177. doi:10.1002/smtd.201800177
Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries.
Nascimento, M.; Novais, S.; Ding, M. S.; Ferreira, M. S.; Koch, S.; Passerini, S.; Pinto, J. L.
2019. Journal of power sources, 410-411, 1–9. doi:10.1016/j.jpowsour.2018.10.096
(De)Lithiation Mechanism of Hierarchically Layered LiNiCoMnO Cathodes during High-Voltage Cycling.
Hua, W.; Schwarz, B.; Knapp, M.; Senyshyn, A.; Missiul, A.; Mu, X.; Wang, S.; Kübel, C.; Binder, J. R.; Indris, S.; Ehrenberg, H.
2019. Journal of the Electrochemical Society, 166 (3), A5025–A5032. doi:10.1149/2.0051903jes
Influence of Salt Concentration on the Properties of Sodium-Based Electrolytes.
Geng, C.; Buchholz, D.; Kim, G.-T.; Vieira Carvalho, D.; Zhang, H.; Chagas, L. G.; Passerini, S.
2019. Small methods, 3 (4), Article: 1800208. doi:10.1002/smtd.201800208
The quaternary system Sm-Fe-Mo-Al and the effect of Al substitution on magnetic and structural properties of its ThMn12 phase.
Simon, D.; Wuest, H.; Koehler, T.; Senyshyn, A.; Ehrenberg, H.; Gutfleisch, O.
2019. Journal of alloys and compounds, 770, 301–307. doi:10.1016/j.jallcom.2018.08.030
Large-scale stationary energy storage : Seawater batteries with high rate and reversible performance.
Kim, Y.; Kim, G.-T.; Jeong, S.; Dou, X.; Geng, C.; Kim, Y.; Passerini, S.
2019. Energy storage materials, 16, 56–64. doi:10.1016/j.ensm.2018.04.028
2018
Highly integrated sic-power modules for ultra-fast lithium-ion battery chargers in llc-topology.
Blank, T.; An, B.; Bauer, D.; Jochem, P.; Luh, M.; Wurst, H.; Weber, M.
2018. International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, PCIM Europe 2018; Nuremberg; Germany; 5 June 2018 through 7 June 2018. Ed.: A. Scharf, 87–94, VDE, Nürnberg
Life-cycle Analysis for Assessing Environmental Impact.
Hottenroth, H.; Peters, J.; Baumann, M.; Viere, T.; Tietze, I.
2018. Energy Storage Options and Their Environmental Impact. Ed.: R.E. Hester, 261–295, Royal Society of Chemistry, London, UK. doi:10.1039/9781788015530-00261
Shallow Talk about Integrated Computational Materials Engineering and Materials Genome Initiative: Ideas and Practice.
Li, B.; Du, Y.; Qiu, L.; Pang, M.; Zhang, W.; Liu, S.; Li, K.; Peng, Y.; Zhou, P.; Zheng, Z.; Song, M.; Seifert, H.
2018. Zhong guo cai liao jin zhan, 37 (7), 506–525. doi:10.7502/j.issn.1674-3962.2018.07.03
High Capacity All-Solid-State Lithium Batteries Enabled by Pyrite-Sulfur Composites.
Ulissi, U.; Ito, S.; Hosseini, S. M.; Varzi, A.; Aihara, Y.; Passerini, S.
2018. Advanced energy materials, 8 (26), 1801462. doi:10.1002/aenm.201801462
Impact of Structural Polymorphism on Ionic Conductivity in Lithium Copper Pyroborate Li6CuB4O10.
Strauss, F.; Rousse, G.; Alves Dalla Corte, D.; Giacobbe, C.; Dominko, R.; Tarascon, J.-M.
2018. Inorganic chemistry, 57 (18), 11646–11654. doi:10.1021/acs.inorgchem.8b01785
Impact of the Acid Treatment on Lignocellulosic Biomass Hard Carbon for Sodium-Ion Battery Anodes.
Dou, X.; Hasa, I.; Saurel, D.; Jauregui, M.; Buchholz, D.; Rojo, T.; Passerini, S.
2018. ChemSusChem, 11 (18), 3276–3285. doi:10.1002/cssc.201801148
MnPO4‐Coated Li(Ni0.4Co0.2Mn0.4)O2 for Lithium(‐Ion) Batteries with Outstanding Cycling Stability and Enhanced Lithiation Kinetics.
Chen, Z.; Kim, G.-T.; Bresser, D.; Diemant, T.; Asenbauer, J.; Jeong, S.; Copley, M.; Behm, R. J.; Lin, J.; Shen, Z.; Passerini, S.
2018. Advanced energy materials, 8 (27), 1801573. doi:10.1002/aenm.201801573
Interaction of Ultrathin Films of Ethylene Carbonate with Oxidized and Reduced Lithium Cobalt Oxide-A Model Study of the Cathode|Electrolyte Interface in Li-Ion Batteries.
Buchner, F.; Fingerle, M.; Kim, J.; Späth, T.; Hausbrand, R.; Behm, R. J.
2018. Advanced materials interfaces, 6 (3), Article no 1801650. doi:10.1002/admi.201801650
Development of Laser Structured Silicon-based Anodes for Lithium-ion Batteries.
Zheng, Y.; Seifert, H. J.; Smyrek, P.; Pfleging, W.
2018. 8th IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale, 3M-NANO 2018; Hangzhou; China; 13 August 2018 through 17 August 2018. Ed.: M. Yu, 6–9, IEEE, Piscataway (NJ). doi:10.1109/3M-NANO.2018.8552232
Molecular Surface Modification of NCM622 Cathode Material Using Organophosphates for Improved Li-Ion Battery Full-Cells.
Neudeck, S.; Walther, F.; Bergfeldt, T.; Suchomski, C.; Rohnke, M.; Hartmann, P.; Janek, J.; Brezesinski, T.
2018. ACS applied materials & interfaces, 10 (24), 20487–20498. doi:10.1021/acsami.8b04405
Copper die-bonding sinter paste: Sintering and bonding properties.
Ishikawa, D.; Sugama, C.; Ueda, S.; Leyrer, B.; Nakako, H.; Negishi, M.; An, B. N.; Blank, T.; Kawana, Y.; Ejiri, Y.; Wurst, H.; Weber, M.
2018. 7th Electronic System-Integration Technology Conference (ESTC) Proceedings, IEEE, Piscataway (NJ). doi:10.1109/ESTC.2018.8546455
Peak Shaving of a Grid connected-Photovoltaic Battery System at Helmholtz Institute Ulm (HIU).
Boyouk, N.; Munzke, N.; Hiller M.
2018. 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), IEEE, Piscataway (NJ). doi:10.1109/ISGTEurope.2018.8571616
Gas Evolution in All-Solid-State Battery Cells.
Bartsch, T.; Strauss, F.; Hatsukade, T.; Schiele, A.; Kim, A.-Y.; Hartmann, P.; Janek, J.; Brezesinski, T.
2018. ACS energy letters, 3 (10), 2539–2543. doi:10.1021/acsenergylett.8b01457
Low Temperature Silver Sinter Processes on (EN)EPEAg Surfaces for High Temperature SiC Power Modules.
Blank, T.; Ishikawa, D.; An, B. N.; Scherer, T.; Bruns, M.; Helber, J.; Leyrer, B.; Wurst, H.; Meisser, M.; Weber, M.
2018. CIPS 2018 : 10th International Conference on Integrated Power Electronics Systems, Stuttgart, March 20-22, 2018, 559–564, VDE-Verl., Berlin
Highly Integrated SiC-power Modules for Ultra-Fast Lithium Ion Battery Chargers in LLC-topology.
Blank, T.; An, B.; Bauer, D.; Jochem, P.; Luh, M.; Wurst, H.; Weber, M.
2018. PCIM Europe : International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management : Nuremberg, 5-7 June 2018, 87–94, VDE-Verl., Berlin
A Battery Cell Emulator for Hardware in the Loop Tests of Reconfigurable Lithium-Ion and Post-Lithium Batteries.
Bischof, S.; Kuecuek, C.; Blank, T.; Weber, M.
2018. PCIM Europe : International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management : Nuremberg, 5-7 June 2018, 245–251, VDE-Verl., Berlin
PtSn nanoparticles supported on titanium carbonitride for the ethanol oxidation reaction.
Roca-Ayats, M.; Guillén-Villafuerte, O.; García, G.; Soler-Vicedo, M.; Pastor, E.; Martínez-Huerta, M. V.
2018. Applied catalysis / B, 237, 382–391. doi:10.1016/j.apcatb.2018.05.078
Employment of ultra-thin carbon layer-coated porous tin oxide as anode in lithium-ion capacitor.
Xuan Tran, M.; Kim, A.-Y.; Lee, J. K.
2018. Applied surface science, 461, 161–170. doi:10.1016/j.apsusc.2018.04.259
Slurry-Based Processing of Solid Electrolytes: A Comparative Binder Study.
Riphaus, N.; Strobl, P.; Stiaszny, B.; Zinkevich, T.; Yavuz, M.; Schnell, J.; Indris, S.; Gasteiger, H. A.; Sedlmaier, S. J.
2018. Journal of the Electrochemical Society, 165 (16), A3993–A3999. doi:10.1149/2.0961816jes
Kinetics and Structural Investigation of Layered Li₉V₃(P₂O₇)₃(PO₄)₂ as cathode material for Li-ion batteries.
Balasubramanian, P.; Mancini, M.; Geßwein, H.; Geiger, D.; Axmann, P.; Kaiser, U.; Wohlfahrt-Mehrens, M.
2018. ChemElectroChem, 5 (1), 201–210. doi:10.1002/celc.201700734
Structural Deformations During Cycling of the Conversion Cathode Nanocomposite Based on FeF3.
Shapovalov, V. V.; Guda, A. A.; Pankin, I. A.; Pohl, A.; Soldatov, A. V.
2018. Journal of structural chemistry, 59 (7), 1719–1725. doi:10.1134/S0022476618070272
Some New Reactions and Properties of Xanthane Hydride (5-Amino-1,2,4-dithiazole-3-thione).
Dotsenko, V. V.; Evmeshchenko, T. Y.; Aksenov, N. A.; Aksenova, I. V.; Krapivin, G. D.; Sharapa, D. I.; Chausov, F. F.; Strelkov, V. D.; Dyadyuchenko, L. V.
2018. Russian journal of general chemistry, 88 (10), 2050–2057. doi:10.1134/S1070363218100043
Silicon nanoparticles with a polymer-derived carbon shell for improved lithium-ion batteries: Investigation into volume expansion, gas evolution, and particle fracture.
Schiele, A.; Breitung, B.; Mazilkin, A.; Schweidler, S.; Janek, J.; Gumbel, S.; Fleischmann, S.; Burakowska-Meise, E.; Sommer, H.; Brezesinski, T.
2018. ACS omega, 3 (12), 16706–16713. doi:10.1021/acsomega.8b02541
High-Resolution Surface Analysis on Aluminum Oxide-Coated Li1.2Mn0.55Ni0.15Co0.1O2 with Improved Capacity Retention.
Dannehl, N.; Steinmüller, S. O.; Szabó, D. V.; Pein, M.; Sigel, F.; Esmezjan, L.; Hasenkox, U.; Schwarz, B.; Indris, S.; Ehrenberg, H.
2018. ACS applied materials & interfaces, 10 (49), 43131–43143. doi:10.1021/acsami.8b09550
Fluorine-free water-in-ionomer electrolytes for sustainable lithium-ion batteries.
He, X.; Yan, B.; Zhang, X.; Liu, Z.; Bresser, D.; Wang, J.; Wang, R.; Cao, X.; Su, Y.; Jia, H.; Grey, C. P.; Frielinghaus, H.; Truhlar, D. G.; Winter, M.; Li, J.; Paillard, E.
2018. Nature Communications, 9 (1), Article No 5320. doi:10.1038/s41467-018-07331-6
HiKoMat: Material design of hierarchical structured composite materials for electrochemical energy storage.
Wagner, A.; Kamlah, M.; Binder, J. R.
2018. Lithium Battery Chemistry Symposium 2018 : held at AABC Europe 2018 : Mainz, Germany, 29 January-1 February 2018, 360, Curran Associates, Inc., Red Hood (NY)
High density flex-cable and interconnection technologies for large silicon detector modules.
Blank, T.; Pfistner, P.; Leyrer, B.; Caselle, M.; Simons, C.; Schmidt, C. J.; Weber, M.
2018. International Conference on Electronics Packaging and IMAPS All Asia Conference (ICEP-IAAC), Mie, J, April 17-21, 2018, 288–292, IEEE, Piscataway (NJ). doi:10.23919/ICEP.2018.8374306
Toward Highly Reversible Magnesium–Sulfur Batteries with Efficient and Practical Mg[B(hfip)] Electrolyte.
Zhao-Karger, Z.; Liu, R.; Dai, W.; Li, Z.; Diemant, T.; Vinayan, B. P.; Bonatto Minella, C.; Yu, X.; Manthiram, A.; Behm, R. J.; Ruben, M.; Fichtner, M.
2018. ACS energy letters, 3 (8), 2005–2013. doi:10.1021/acsenergylett.8b01061
Off-Grid Hybrid Renewable Energy Systems, A techno-economic analysis of the concept.
Elkadragy, M. M.
2018. Windtech international, 14, 22–25
Passive Hybrid Storage Systems: Influence of circuit and system design on performance and lifetime.
Grün, T.; Smith, A.; Ehrenberg, H.; Doppelbauer, M.
2018. Energy procedia, 155, 336–349. doi:10.1016/j.egypro.2018.11.044
Performance of In-House Li-Ion Battery Storage System Based on Various Strategies.
Verma, B.; Munzke, N.; Hiller, M.
2018. Proceedings of the 35th European Photovoltaic Solar Energy Conference and Exhibition, Bruxelles, B, September 24-27, 2018, 1739–1743. doi:10.4229/35thEUPVSEC20182018-6EO.2.2
Intelligent control of household Li-ion battery storage systems.
Munzke, N.; Schwarz, B.; Hiller, M.
2018. Energy procedia, 155, 17–31. doi:10.1016/j.egypro.2018.11.069
Energieeffizienz verschiedener PV-Speichersystemkonzepte.
Orth, N.; Weniger, J.; Tjaden, T.; Munzke, N.; Schwarz, B.; Büchle, F.; Messner, C.; Figgener, J.; Haberschusz, D.; Quaschning, V.
2018. De, (13/14), 36–41
A hydrostable cathode material based on the layered P2@P3 composite with revealed redox behavior of Cu for high-rate and long cycling sodium-ion batteries.
Yan, Z.; Tang, L.; Huang, Y.; Hua, W.; Wang, Y.; Liu, R.; Gu, Q.; Indris, S.; Chou, S.; Huang, Y.; Wu, M.; Dou, S.-X.
2018. Angewandte Chemie / International edition, 58 (5), 1412–1416. doi:10.1002/anie.201811882
Insight into the Multirole of Graphene in Preparation of High Performance NaFe(SO) Cathodes.
Liu, Y.; Rajagopalan, R.; Wang, E.; Chen, M.; Hua, W.; Zhong, B.; Zhong, Y.; Wu, Z.; Guo, X.
2018. ACS sustainable chemistry & engineering, 6 (12), 16105–16112. doi:10.1021/acssuschemeng.8b02679
Artificial Composite Anode Comprising High-Capacity Silicon and Carbonaceous Nanostructures for Long Cycle Life Lithium-Ion Batteries.
Breitung, B.; Schneider, A.; Chakravadhanula, V. S. K.; Suchomski, C.; Janek, J.; Sommer, H.; Brezesinski, T.
2018. Batteries & Supercaps, 1 (1), 27–32. doi:10.1002/batt.201700004
Moving to Aqueous Binder: A Valid Approach to Achieving High-Rate Capability and Long-Term Durability for Sodium-Ion Battery.
Zhao, J.; Yang, X.; Yao, Y.; Gao, Y.; Sui, Y.; Zou, B.; Ehrenberg, H.; Chen, G.; Du, F.
2018. Advanced science, 5 (4), Article: 1700768. doi:10.1002/advs.201700768
Probing the 3-step Lithium Storage Mechanism in CH3NH3PbBr3 Perovskite Electrode by Operando‐XRD Analysis.
Vicente, N.; Bresser, D.; Passerini, S.; Garcia-Belmonte, G.
2018. ChemElectroChem, 6 (2), 456–460. doi:10.1002/celc.201801291
The electric double layer at metal-water interfaces revisited based on a charge polarization scheme.
Sakong, S.; Groß, A.
2018. The journal of chemical physics, 149 (8), Artikel-Nr.: 084705. doi:10.1063/1.5040056
10 - Photocatalysts for hydrogen generation and organic contaminants degradation.
Nagar, R.; Varrla, E.; Bhaghavathi Parambath, V.
2018. Multifunctional Photocatalytic Materials for Energy. Ed.: Z. Lin, 215–236, Duxford, Cambridge (MA). doi:10.1016/B978-0-08-101977-1.00011-9
Bio-waste chicken eggshells to store energy.
Minakshi, M.; Visbal, H.; Mitchell, D. R. G.; Fichtner, M.
2018. Dalton transactions, 2018 (47), 16828–16834. doi:10.1039/c8dt03252a
Effect of oxidizer in the synthesis of NiO anchored nanostructure nickel molybdate for sodium-ion battery.
Minakshi, M.; Barmi, M.; Mitchell, D. R. G.; Barlow, A. J.; Fichtner, M.
2018. Materials today, 10, 1–14. doi:10.1016/j.mtener.2018.08.004
Composite Metal Oxide-Carbon Nanotube Electrocatalysts for the Oxygen Evolution and Oxygen Reduction Reactions.
Luo, W.; Wang, J.; Hu, J.; Ji, Y.; Streb, C.; Song, Y.-F.
2018. ChemElectroChem, 5 (19), 2850–2856. doi:10.1002/celc.201800680
Fluorine-Free Water-in-Salt Electrolyte for Green and Low-Cost Aqueous Sodium-Ion Batteries.
Han, J.; Zhang, H.; Varzi, A.; Passerini, S.
2018. ChemSusChem, 11 (21), 3704–3707. doi:10.1002/cssc.201801930
Lithium Polymer Electrolytes and Batteries.
Eshetu, G. G.; Armand, M.; Passerini, S.
2018. Prospects for Li-ion Batteries and Emerging Energy Electrochemical Systems. Vol.: 4. Ed.: L. Monconduit, 319–364, World Scientific, London. doi:10.1142/9789813228146_0006
Insights into the Structure and Transport of the Lithium, Sodium, Magnesium, and Zinc Bis(trifluoromethansulfonyl)imide Salts in Ionic Liquids.
Borodin, O.; Giffin, G. A.; Moretti, A.; Haskins, J. B.; Lawson, J. W.; Henderson, W. A.; Passerini, S.
2018. The journal of physical chemistry <Washington, DC> / C, 122 (35), 20108–20121. doi:10.1021/acs.jpcc.8b05573
Differentiating Molecular and Solid-State Vanadium Oxides as Active Materials in Battery Electrodes.
Anjass, M. H.; Deisböck, M.; Greiner, S.; Fichtner, M.; Streb, C.
2018. ChemElectroChem, 6 (2), 398–403. doi:10.1002/celc.201801406
Fast kinetics of multivalent intercalation chemistry enabled by solvated magnesium-ions into self-established metallic layered materials.
Li, Z.; Mu, X.; Zhao-Karger, Z.; Diemant, T.; Behm, R. J.; Kübel, C.; Fichtner, M.
2018. Nature Communications, 9 (1), Article no 5115. doi:10.1038/s41467-018-07484-4
Conversion/alloying lithium-ion anodes-enhancing the energy density by transition metal doping.
Ma, Y.; Ma, Y.; Giuli, G.; Diemant, T.; Behm, R. J.; Geiger, D.; Kaiser, U.; Ulissi, U.; Passerini, S.; Bresser, D.
2018. Sustainable energy & fuels, 2 (12), 2601–2608. doi:10.1039/c8se00424b
Using theorem provers to increase the precision of dependence analysis for information flow control.
Beckert, B.; Bischof, S.; Herda, M.; Kirsten, M.; Kleine Büning, M.
2018. 20th International Conference on Formal Engineering Methods, ICFEM 2018; Gold Coast; Australia; 12 November 2018 through 16 November 2018. Ed.: J. Sun, 284–300, Springer, Cham. doi:10.1007/978-3-030-02450-5_17
Inducing High Ionic Conductivity in the Lithium Superionic Argyrodites LiPGeSI for All-Solid-State Batteries.
Kraft, M. A.; Ohno, S.; Zinkevich, T.; Koerver, R.; Culver, S. P.; Fuchs, T.; Senyshyn, A.; Indris, S.; Morgan, B. J.; Zeier, W. G.
2018. Journal of the American Chemical Society, 140 (47), 16330–16339. doi:10.1021/jacs.8b10282
Nanostructured multi-block copolymer single-ion conductors for safer high-performance lithium batteries.
Nguyen, H.-D.; Kim, G.-T.; Shi, J.; Paillard, E.; Judeinstein, P.; Lyonnard, S.; Bresser, D.; Iojoiu, C.
2018. Energy & environmental science, 11 (11), 3298–3309. doi:10.1039/c8ee02093k
Alternative binders for sustainable electrochemical energy storage-the transition to aqueous electrode processing and bio-derived polymers.
Bresser, D.; Buchholz, D.; Moretti, A.; Varzi, A.; Passerini, S.
2018. Energy & environmental science, 11 (11), 3096–3127. doi:10.1039/c8ee00640g
Use of the buffer layers as a current flow diverter in 2G HTS coated conductors.
Fournier-Lupien, J.-H.; Lacroix, C.; Hellmann, S.; Huh, J.; Pfeiffer, K.; Sirois, F.
2018. Superconductor science and technology, 31 (12), 125019. doi:10.1088/1361-6668/aae2cd
Anatase TiO nanoparticles for lithium-ion batteries.
El-Deen, S. S.; Hashem, A. M.; Abdel Ghany, A. E.; Indris, S.; Ehrenberg, H.; Mauger, A.; Julien, C. M.
2018. Ionics, 24 (10), 2925–2934. doi:10.1007/s11581-017-2425-y
Improved All-Vanadium Redox Flow Batteries using Catholyte Additive and a Cross-linked Methylated Polybenzimidazole Membrane.
Chen, R.; Henkensmeier, D.; Kim, S.; Yoon, S. J.; Zinkevich, T.; Indris, S.
2018. ACS applied energy materials, 1 (11), 6047–6055. doi:10.1021/acsaem.8b01116
Operando Studies of Antiperovskite Lithium Battery Cathode Material (LiFe)SO.
Mikhailova, D.; Giebeler, L.; Maletti, S.; Oswald, S.; Sarapulova, A.; Indris, S.; Hu, Z.; Bednarcik, J.; Valldor, M.
2018. ACS applied energy materials, 1 (11), 6593–6599. doi:10.1021/acsaem.8b01493
Observation of Electrochemically Active Fe /Fe in LiCoFeMnO by in situ Fe-Mössbauer Spectroscopy and X-Ray Absorption Spectroscopy.
Dräger, C.; Sigel, F.; Witte, R.; Kruk, R.; Pfaffmann, L.; Mangold, S.; Mereacre, V.; Knapp, M.; Ehrenberg, H.; Indris, S.
2018. Physical chemistry, chemical physics. doi:10.1039/C8CP06177G
Origin of Carbon Dioxide Evolved during Cycling of Nickel-Rich Layered NCM Cathodes.
Hatsukade, T.; Schiele, A.; Hartmann, P.; Brezesinski, T.; Janek, J.
2018. ACS applied materials & interfaces, 10 (45), 38892–38899. doi:10.1021/acsami.8b13158
A highly integrated copper sintered SiC power module for fast switching operation.
An, B. N.; Ishikawa, D.; Blank, T.; Wurst, H.; Demattio, H.; Leyrer, B.; Kolb, J.; Scherer, T.; Simon, A.; Weber, M.
2018. 2018 International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC), Kuwana, J, April 17-2, 2018, 375–380, IEEE, Piscataway, NJ. doi:10.23919/ICEP.2018.8374327
High-Efficiency Sodium-Ion Battery Based on NASICON Electrodes with High Power and Long Lifespan.
Zhang, H.; Qin, B.; Buchholz, D.; Passerini, S.
2018. ACS applied energy materials. doi:10.1021/acsaem.8b01390
Illi Isabellistes Se Custodes Egregios Praestabant.
Bischof, S.; Breitner, J.; Lohner, D.; Snelting, G.
2018. Principled Software Development – Essays Dedicated to Arnd Poetzsch-Heffter on the Occasion of his 60th Birthday. Ed.: P. Müller, 267–282, Springer International Publishing, Cham. doi:10.1007/978-3-319-98047-8_17
Facile synthesis of C–FeF2 nanocomposites from CFx: influence of carbon precursor on reversible lithium storage.
Reddy, M. A.; Breitung, B.; Kiran Chakravadhanula, V. S.; Helen, M.; Witte, R.; Rongeat, C.; Kübel, C.; Hahn, H.; Fichtner, M.
2018. RSC Advances, 8 (64), 36802–36811. doi:10.1039/C8RA07378C
Insight into Sodium Insertion and the Storage Mechanism in Hard Carbon.
Anji Reddy, M.; Helen, M.; Groß, A.; Fichtner, M.; Euchner, H.
2018. ACS energy letters, 3, 2851–2857. doi:10.1021/acsenergylett.8b01761
Magnetic structure and spin correlations in magnetoelectric honeycomb Mn₄Ta₂O₉.
Narayanan, N.; Senyshyn, A.; Mikhailova, D.; Faske, T.; Lu, T.; Liu, Z.; Weise, B.; Ehrenberg, H.; Mole, R. A.; Hutchison, W. D.; Fuess, H.; McIntyre, G. J.; Liu, Y.; Yu, D.
2018. Physical review / B, 98 (13), Article No.134438. doi:10.1103/PhysRevB.98.134438
Surfactant modified platinum based fuel cell cathode studied by X-ray absorption spectroscopy.
Melke, J.; Dixon, D.; Riekehr, L.; Benker, N.; Langner, J.; Lentz, C.; Sezen, H.; Nefedov, A.; Wöll, C.; Ehrenberg, H.; Roth, C.
2018. Journal of catalysis, 364, 282–290. doi:10.1016/j.jcat.2018.05.024
Dehydrogenation and rehydrogenation of a 0.62LiBH₄-0.38NaBH₄ mixture with nano-sized Ni.
Liu, Y.; Heere, M.; Contreras Vasquez, L.; Paterakis, C.; Sørby, M. H.; Hauback, B. C.; Book, D.
2018. International journal of hydrogen energy, 43 (34), 16782–16792. doi:10.1016/j.ijhydene.2018.04.211
Elucidating the energy storage mechanism of ZnMn₂O₄ as promising anode for Li-ion batteries.
Zhao, Z.; Tian, G.; Sarapulova, A.; Trouillet, V.; Fu, Q.; Geckle, U.; Ehrenberg, H.; Dsoke, S.
2018. Journal of materials chemistry / A, 6 (40), 19381–19392. doi:10.1039/C8TA06294C
Binding Energy Referencing for XPS in Alkali Metal-Based Battery Materials Research (II): Application to Complex Composite Electrodes.
Oswald, S.; Thoss, F.; Zier, M.; Hoffmann, M.; Jaumann, T.; Herklotz, M.; Nikolowski, K.; Scheiba, F.; Kohl, M.; Giebeler, L.; Mikhailova, D.; Ehrenberg, H.
2018. Batteries, 4 (3), 36. doi:10.3390/batteries4030036
A Novel Graphene Oxide Wrapped Na₂Fe₂(SO₄)₃/C Cathode Composite for Long Life and High Energy Density Sodium-Ion Batteries.
Chen, M.; Cortie, D.; Hu, Z.; Jin, H.; Wang, S.; Gu, Q.; Hua, W.; Wang, E.; Lai, W.; Chen, L.; Chou, S.-L.; Wang, X.-L.; Dou, S.-X.
2018. Advanced energy materials, 8 (27), 1800944. doi:10.1002/aenm.201800944
Green synthesis of nanosized manganese dioxide as positive electrode for lithium-ion batteries using lemon juice and citrus peel.
Hashem, A. M.; Abuzeid, H.; Kaus, M.; Indris, S.; Ehrenberg, H.; Mauger, A.; Julien, C. M.
2018. Electrochimica acta, 262, 74–81. doi:10.1016/j.electacta.2018.01.024
Fabrication and characterization of monodispersed Mn0.8Ni 0.2Co₂O₄ mesoporous microspheres for supercapacitor application.
Mariappan, C. R.; Upadhyay, S.; Kumar, V.; Indris, S.; Ehrenberg, H.
2018. Ceramics international, 44 (8), 8864–8869. doi:10.1016/j.ceramint.2018.02.071
Ionic conduction and dielectric properties of yttrium doped LiZr₂(PO₄)₃ obtained by a Pechini-type polymerizable complex route.
Mariappan, C. R.; Kumar, P.; Kumar, A.; Indris, S.; Ehrenberg, H.; Vijaya Prakash, G.; Jose, R.
2018. Ceramics international, 44 (13), 15509–15516. doi:10.1016/j.ceramint.2018.05.211
Lithium Tracer Diffusion in Amorphous LiₓSi for Low Li Concentrations.
Strauß, F.; Dörrer, L.; Bruns, M.; Schmidt, H.
2018. The journal of physical chemistry <Washington, DC> / C, 122 (12), 6508–6513. doi:10.1021/acs.jpcc.7b12296
Surface analytical characterization of LiNi0.8-yMnyCo0.2O₂ (0 ≤ y ≤ 0.4) compounds for lithium-ion battery electrodes.
Azmi, R.; Masoumi, M.; Ehrenberg, H.; Trouillet, V.; Bruns, M.
2018. Surface and interface analysis, 50 (11), 1132–1137. doi:10.1002/sia.6415
A 3D MoOₓ/carbon composite array as a binder-free anode in lithium-ion batteries.
Herdt, T.; Bruns, M.; Schneider, J. J.
2018. Dalton transactions, 47, 14897–14907. doi:10.1039/c8dt02076k
Fabrication of nanostructured polymers by laser-assisted hot embossing for biological and optical applications.
Rakebrandt, J.-H.; Besser, H.; Habermehl, A.; Guttmann, M.; Wissmann, M.; Eschenbaum, C.; Lemmer, U.; Seifert, H. J.; Pfleging, W.
2018. Proceedings of the 18th International Conference of the European Society for Precision Engineering and Nanotechnology, Venice, I, June 4-8, 2018, 289–290, euspen
Probing chemical heterogeneity of Li-ion batteries by in operando high energy X-ray diffraction radiography.
Mühlbauer, M. J.; Schökel, A.; Etter, M.; Baran, V.; Senyshyn, A.
2018. Journal of power sources, 403, 49–55. doi:10.1016/j.jpowsour.2018.09.035
Electrocatalytic Oxygen Reduction and Oxygen Evolution in Mg-Free and Mg-Containing Ionic Liquid 1-Butyl-1-Methylpyrrolidinium Bis (Trifluoromethanesulfonyl) Imide.
Bozorgchenani, M.; Fischer, P.; Schnaidt, J.; Diemant, T.; Schwarz, R. M.; Marinaro, M.; Wachtler, M.; Jörissen, L.; Behm, R. J.
2018. ChemElectroChem, 5 (18), 2600–2611. doi:10.1002/celc.201800508
The metal-ionic liquid interface as characterized by impedance spectroscopy and: In situ scanning tunneling microscopy.
Pajkossy, T.; Müller, C.; Jacob, T.
2018. Physical chemistry, chemical physics, 20 (33), 21241–21250. doi:10.1039/c8cp02074d
Chemo-mechanical expansion of lithium electrode materials-on the route to mechanically optimized all-solid-state batteries.
Koerver, R.; Zhang, W.; De Biasi, L.; Schweidler, S.; Kondrakov, A. O.; Kolling, S.; Brezesinski, T.; Hartmann, P.; Zeier, W. G.; Janek, J.
2018. Energy & environmental science, 11 (8), 2142–2158. doi:10.1039/c8ee00907d
Heat capacities and an updated thermodynamic model for the Li-Sn system.
Reichmann, T. L.; Li, D.; Cupid, D. M.
2018. Physical Chemistry Chemical Physics, 20 (35), 22856–22866. doi:10.1039/c8cp04205e
Phase-field study of surface irregularities of a cathode particle during intercalation.
Santoki, J.; Schneider, D.; Selzer, M.; Wang, F.; Kamlah, M.; Nestler, B.
2018. Modelling and simulation in materials science and engineering, 26 (6), 065013. doi:10.1088/1361-651X/aad20a
Manganese phosphate coated Li[NiCoMn]O cathode material: Towards superior cycling stability at elevated temperature and high voltage.
Chen, Z.; Kim, G.-T.; Guang, Y.; Bresser, D.; Diemant, T.; Huang, Y.; Copley, M.; Behm, R. J.; Passerini, S.; Shen, Z.
2018. Journal of power sources, 402, 263–271. doi:10.1016/j.jpowsour.2018.09.049
Experimental and Computational Study on the Interaction of an Ionic Liquid Monolayer with Lithium on Pristine and Lithiated Graphite.
Buchner, F.; Forster-Tonigold, K.; Kim, J.; Adler, C.; Bansmann, J.; Groß, A.; Behm, R. J.
2018. The journal of physical chemistry <Washington, DC> / C, 122 (33), 18968–18981. doi:10.1021/acs.jpcc.8b04660
High-Pressure Synthesis of β-Ir4B5 and Determination of the Compressibility of Various Iridium Borides.
Petermüller, B.; Neun, C.; Wurst, K.; Bayarjargal, L.; Zimmer, D.; Morgenroth, W.; Avalos-Borja, M.; Becerril-Juarez, I. G.; Mühlbauer, M. J.; Winkler, B.; Huppertz, H.
2018. Inorganic chemistry, 57 (16), 10341–10351. doi:10.1021/acs.inorgchem.8b01541
Room-Temperature, Rechargeable Solid-State Fluoride-Ion Batteries.
Mohammad, I.; Witter, R.; Fichtner, M.; Anji Reddy, M.
2018. ACS applied energy materials, 1 (9), 4766–4775. doi:10.1021/acsaem.8b00864
Insight into Sulfur Confined in Ultramicroporous Carbon.
Helen, M.; Diemant, T.; Schindler, S.; Behm, R. J.; Danzer, M.; Kaiser, U.; Fichtner, M.; Anji Reddy, M.
2018. ACS omega, 3 (9), 11290–11299. doi:10.1021/acsomega.8b01681
Laser surface modification and polishing of additive manufactured metallic parts.
Dos Santos Solheid, J.; Seifert, H. J.; Pfleging, W.
2018. Procedia CIRP, 74, 280–284. doi:10.1016/j.procir.2018.08.111
Laser micro structuring of composite Li (Ni0.6Mn0.2Co0.2) O2cathode layersfor lithium-ion batteries.
Rakebrandt, J.-H.; Smyrek, P.; Zheng, Y.; Seifert, H. J.; Pfleging, W.
2018. 2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), Shanghai, China, 7–11 August 2017, 57–60, IEEE, Piscataway (NJ). doi:10.1109/3M-NANO.2017.8286297
Laser-assisted post-processing of additive manufactured metallic parts.
Dos Santos Solheid, J.; Seifert, H. J.; Pfleging, W.
2018. Proceedings of the 18th International Conference of the European Society for Precision Engineering and Nanotechnology, Venice, I, June 4-8, 2018. Ed.: D. Billington, 275–276, euspen, Bedford, UK
Surface Functionalization of Silicon, HOPG, and Graphite Electrodes: Toward an Artificial Solid Electrolyte Interface.
Moock, D. S.; Steinmüller, S. O.; Wessely, I. D.; Llevot, A.; Bitterer, B.; Meier, M. A. R.; Bräse, S.; Ehrenberg, H.; Scheiba, F.
2018. ACS applied materials & interfaces, 10 (28), 24172–24180. doi:10.1021/acsami.8b04877
Effect of additives, ball milling and isotopic exchange in porous magnesium borohydride.
Heere, M.; Zavorotynska, O.; Deledda, S.; Sørby, M. H.; Book, D.; Steriotis, T.; Hauback, B. C.
2018. RSC Advances, 8 (49), 27645–27653. doi:10.1039/c8ra05146a
Spectroscopic characterization of lithium thiophosphates by XPS and XAS-a model to help monitor interfacial reactions in all-solid-state batteries.
Dietrich, C.; Koerver, R.; Gaultois, M. W.; Kieslich, G.; Cibin, G.; Janek, J.; Zeier, W. G.
2018. Physical chemistry, chemical physics, 20 (30), 20088–20095. doi:10.1039/c8cp01968a
Transition metal cations on the move: Simultaneous: operando X-ray absorption spectroscopy and X-ray diffraction investigations during Li uptake and release of a NiFe2O4/CNT composite.
Permien, S.; Neumann, T.; Indris, S.; Neubüser, G.; Kienle, L.; Fiedler, A.; Hansen, A.-L.; Gianolio, D.; Bredow, T.; Bensch, W.
2018. Physical chemistry, chemical physics, 20 (28), 19129–19141. doi:10.1039/c8cp02919a
Bacterial Adhesion on the Titanium and Stainless-Steel Surfaces Undergone Two Different Treatment Methods: Polishing and Ultrafast Laser Treatment.
Chik, N.; Wan Md Zain, W. S.; Mohamad, A. J.; Sidek, M. Z.; Wan Ibrahim, W. H.; Reif, A.; Rakebrandt, J. H.; Pfleging, W.; Liu, X.
2018. IOP conference series / Materials science and engineering, 358, Article 012034. doi:10.1088/1757-899X/358/1/012034
Aqueous/Nonaqueous Hybrid Electrolyte for Sodium-Ion Batteries.
Zhang, H.; Qin, B.; Han, J.; Passerini, S.
2018. ACS energy letters, 3 (7), 1769–1770. doi:10.1021/acsenergylett.8b00919
Electrostatic self-assembly of LiFePO₄ cathodes on a three-dimensional substrate for lithium ion batteries.
Tian, G.; Scheiba, F.; Pfaffmann, L.; Fiedler, A.; Chakravadhanula, V. S. K.; Balachandran, G.; Zhao, Z.; Ehrenberg, H.
2018. Electrochimica acta, 283, 1375–1383. doi:10.1016/j.electacta.2018.07.088
Anion Doping of Ferromagnetic Thin Films of La0.74Sr0.26MnO3−δ via Topochemical Fluorination.
Anitha Sukkurji, P.; Molinari, A.; Reitz, C.; Witte, R.; Kübel, C.; Chakravadhanula, V.; Kruk, R.; Clemens, O.
2018. Materials, 11 (7), 1204. doi:10.3390/ma11071204
Li⁺-Ion Dynamics in β-Li₃PS₄ Observed by NMR: Local Hopping and Long-Range Transport.
Stöffler, H.; Zinkevich, T.; Yavuz, M.; Senyshyn, A.; Kulisch, J.; Hartmann, P.; Adermann, T.; Randau, S.; Richter, F. H.; Janek, J.; Indris, S.; Ehrenberg, H.
2018. The journal of physical chemistry <Washington, DC> / C, 122 (28), 15954–15965. doi:10.1021/acs.jpcc.8b05431
Synthesis of Fast Fluoride-Ion-Conductive Fluorite-Type Ba₁₋ₓSbₓF₂₊ₓ (0.1 ≤ x ≤ 0.4): A Potential Solid Electrolyte for Fluoride-Ion Batteries.
Mohammad, I.; Chable, J.; Witter, R.; Fichtner, M.; Reddy, M. A.
2018. ACS applied materials & interfaces, 10 (20), 17249–17256. doi:10.1021/acsami.8b04108
New insights into the electrochemistry of magnesium molybdate hierarchical architectures for high performance sodium devices.
Minakshi, M.; Mitchell, D. R. G.; Munnangi, A. R.; Barlow, A. J.; Fichtner, M.
2018. Nanoscale, 10 (27), 13277–13288. doi:10.1039/c8nr03824d
Cobalt Disulfide Nanoparticles Embedded in Porous Carbonaceous Micro-Polyhedrons Interlinked by Carbon Nanotubes for Superior Lithium and Sodium Storage.
Ma, Y.; Ma, Y.; Bresser, D.; Ji, Y.; Geiger, D.; Kaiser, U.; Streb, C.; Varzi, A.; Passerini, S.
2018. ACS nano, 12 (7), 7220–7231. doi:10.1021/acsnano.8b03188
Ionic Liquid-Based Electrolyte Membranes for Medium-High Temperature Lithium Polymer Batteries.
Kim, G.-T.; Passerini, S.; Carewska, M.; Appetecchi, G.
2018. Membranes, 8 (3), 41. doi:10.3390/membranes8030041
Comparative Analysis of Aqueous Binders for High-Energy Li-Rich NMC as a Lithium-Ion Cathode and the Impact of Adding Phosphoric Acid.
Kazzazi, A.; Bresser, D.; Birrozzi, A.; von Zamory, J.; Hekmatfar, M.; Passerini, S.
2018. ACS applied materials & interfaces, 10 (20), 17214–17222. doi:10.1021/acsami.8b03657
Role Platinum Nanoparticles Play in the Kinetic Mechanism of Oxygen Reduction Reaction in Nonaqueous Solvents.
Galiote, N. A.; Ulissi, U.; Passerini, S.; Huguenin, F.
2018. The journal of physical chemistry <Washington, DC> / C, 122 (28), 15826–15834. doi:10.1021/acs.jpcc.8b02606
Effect of Redox Electrolyte on the Specific Capacitance of SrRuO3–Reduced Graphene Oxide Nanocomposites.
Galal, A.; Hassan, H. K.; Atta, N. F.; Jacob, T.
2018. The journal of physical chemistry <Washington, DC> / C, 122 (22), 11641–11650. doi:10.1021/acs.jpcc.8b02068
High Capacity Garnet-Based All-Solid-State Lithium Batteries: Fabrication and 3D-Microstructure Resolved Modeling.
Finsterbusch, M.; Danner, T.; Tsai, C.-L.; Uhlenbruck, S.; Latz, A.; Guillon, O.
2018. ACS applied materials & interfaces, 10 (26), 22329–22339. doi:10.1021/acsami.8b06705
Design of Nickel-Based Cation-Disordered Rock-Salt Oxides: The Effect of Transition Metal (M = V, Ti, Zr) Substitution in LiNiMO Binary Systems.
Cambaz, M. A.; Vinayan, B. P.; Euchner, H.; Johnsen, R. E.; Guda, A. A.; Mazilkin, A.; Rusalev, Y. V.; Trigub, A. L.; Gross, A.; Fichtner, M.
2018. ACS applied materials & interfaces, 10 (26), 21957–21964. doi:10.1021/acsami.8b02266
Adsorption of Ultrathin Ethylene Carbonate Films on Pristine and Lithiated Graphite and Their Interaction with Li.
Bozorgchenani, M.; Buchner, F.; Forster-Tonigold, K.; Kim, J.; Groß, A.; Behm, R. J.
2018. Langmuir, 34 (29), 8451–8463. doi:10.1021/acs.langmuir.8b01054
Temperature-dependent insertion and adsorption of lithium on spinel Li4Ti5O12(111) thin films-an angle-resolved XPS study.
Kim, J.; Buchner, F.; Behm, R. J.
2018. Physical chemistry, chemical physics, 20 (27), 18319–18327. doi:10.1039/c8cp01851k
Non-aqueous potassium-ion batteries: a review.
Vaalma, C.; Buchholz, D.; Passerini, S.
2018. Current Opinion in Electrochemistry, 9, 41–48. doi:10.1016/j.coelec.2018.03.031
HIPE – An energy-Status-Data set from industrial production.
Bischof, S.; Trittenbach, H.; Vollmer, M.; Werle, D.; Blank, T.; Böhm, K.
2018. 9th ACM International Conference on Future Energy Systems, e-Energy 2018; Karlsruhe; Germany; 12 June 2018 through 15 June 2018, 599–603, ACM, New York (NY). doi:10.1145/3208903.3210278
Truncated octahedral high-voltage spinel LiNi0.5Mn1.5O4 cathode materials for lithium ion batteries: Positive influences of Ni/Mn disordering and oxygen vacancies.
Liu, H.; Zhang, X.; He, X.; Senyshyn, A.; Wilken, A.; Zhou, D.; Fromm, O.; Niehoff, P.; Yan, B.; Li, J.; Muehlbauer, M.; Wang, J.; Schumacher, G.; Paillard, E.; Winter, M.; Li, J.
2018. Journal of the Electrochemical Society, 165 (9), A1886-A1896. doi:10.1149/2.1241809jes
Synthesis, structure, and polymorphic transitions of praseodymium(iii) and neodymium(iii) borohydride, Pr(BH4)3 and Nd(BH4)3.
Payandeh Gharibdoust, S.; Heere, M.; Nervi, C.; Sørby, M. H.; Hauback, B. C.; Jensen, T. R.
2018. Dalton transactions, 47 (25), 8307–8319. doi:10.1039/c8dt00118a
Thermal structural behavior of electrodes in li-ion battery studied in operando.
Baran, V.; Dolotko, O.; Mühlbauer, M. J.; Senyshyn, A.; Ehrenberg, H.
2018. Journal of the Electrochemical Society, 165 (9), A1975-A1982. doi:10.1149/2.1441809jes
ECM Models for Li-Ion Batteries – A Short Mathematical Survey and Simulations.
Melcher, A.; Ziebert, C.; Rohde, M.; Lei, B.; Seifert, H. J.
2018. Ideen und Innovationen für die Energie von morgen : Wissenschaftliche Beiträge des KIT zu den Jahrestagungen 2014, 2016 und 2017 des KIT-Zentrums Energie. Hrsg.: W. Breh, 53–58, KIT Scientific Publishing, Karlsruhe. doi:10.5445/IR/1000084916
Experimental Analysis of Thermal Runaway in 18650 Cylindrical Li-Ion Cells using an Accelerating Rate Calorimeter.
Lei, B.; Zhao, W.; Ziebert, C.; Melcher, A.; Rohde, M.; Seifert, H. J.
2018. Ideen und Innovationen für die Energie von morgen : Wissenschaftliche Beiträge des KIT zu den Jahrestagungen 2014, 2016 und 2017 des KIT-Zentrums Energie. Hrsg.: W. Breh, 45–52, KIT Scientific Publishing, Karlsruhe. doi:10.5445/IR/1000084915
Electrochemical-calorimetric studies on different lithium-ion cells.
Lei, B.; Melcher, A.; Ziebert, C.; Rohde, M.; Seifert, H. J.
2018. Ideen und Innovationen für die Energie von morgen : Wissenschaftliche Beiträge des KIT zu den Jahrestagungen 2014, 2016 und 2017 des KIT-Zentrums Energie. Ed.: W. Breh, 9–16, KIT Scientific Publishing, Karlsruhe. doi:10.5445/IR/1000084899
Low-deterministic security for low-nondeterministic programs.
Bischof, S.; Breitner, J.; Graf, J.; Hecker, M.; Mohr, M.; Snelting, G.
2018. Journal of computer security, 26, 335–366. doi:10.3233/JCS-17984
Highly porous single-ion conductive composite polymer electrolyte for high performance Li-ion batteries.
Zhang, Y.; Chen, Y.; Liu, Y.; Qin, B.; Yang, Z.; Sun, Y.; Zeng, D.; Alberto varzi; Passerini, S.; Liu, Z.; Cheng, H.
2018. Journal of power sources, 397, 79–86. doi:10.1016/j.jpowsour.2018.07.007
Investigation of the influence of nanostructured LiNi0.33Co0.33Mn0.33O2 lithium-ion battery electrodes on performance and aging.
Dreizler, A. M.; Bohn, N.; Geßwein, H.; Müller, M.; Binder, J. R.; Wagner, N.; Andreas Friedrich, K.
2018. Journal of the Electrochemical Society, 165 (2), A273-A282. doi:10.1149/2.1061802jes
Activation and degradation of electrospun LiFePO4 battery cathodes.
Bachtin, K.; Kramer, D.; Chakravadhanula, V. S. K.; Mu, X.; Trouillet, V.; Kaus, M.; Indris, S.; Ehrenberg, H.; Roth, C.
2018. Journal of power sources, 396, 386–394. doi:10.1016/j.jpowsour.2018.06.051
Passive Hybrid Storage Systems: Investigation of Lithium Ion Battery and Lithium Ion Capacitor Connections.
Grün, T.; Smith, A.
2018. Proceedings of the 28th International Ocean and Polar Engineering Conference (ISOPE-2018), Sapporo, J, June 10–15. 2018, 36–43, ISOPE, Cupertino (CA)
Dimensionierung und Auslegung von Photovoltaik-Speichersystemen.
Munzke, N.
2018. Stromspeicher für Gewerbe und Industrie : Technik, Auswahl und Auslegung : mit Anmerkungen für Heimspeicher. Hrsg.: Deutsches Institut für Normung, 114–153, Beuth, Berlin
Contrastive techno-economic analysis concept for off-grid hybrid renewable electricity systems based on comparative case studies within Canada and Uganda.
Elkadragy, M. M.; Baumann, M.; Moore, N.; Weil, M.; Lemmertz, N.; Hiller, M.
2018. 3rd International Hybrid Power Systems Workshop, Santa Cruz de Tenerife, E, May 8-9, 2018, Energynautics, Darmstadt
Monitoring microbial soiling in photovoltaic systems: A qPCR-based approach.
Martin-Sanchez, P. M.; Gebhardt, C.; Toepel, J.; Barry, J.; Munzke, N.; Günster, J.; Gorbushina, A. A.
2018. International biodeterioration & biodegradation, 129, 13–22. doi:10.1016/j.ibiod.2017.12.008
Design and Synthesis of Layered Na₂Ti₃O₇ and Tunnel Na₂Ti₆O₁₃ Hybrid Structures with Enhanced Electrochemical Behavior for Sodium-Ion Batteries.
Wu, C.; Hua, W.; Zhang, Z.; Zhong, B.; Yang, Z.; Feng, G.; Xiang, W.; Wu, Z.; Guo, X.
2018. Advanced science, 5 (9), Article: 1800519. doi:10.1002/advs.201800519
LCA of key technologies for future electricity supply—68th LCA forum, Swiss Federal Institute of Technology, Zurich, 16 April, 2018.
Frischknecht, R.; Bauer, C.; Bucher, C.; Ellingsen, L. A.-W.; Gutzwiller, L.; Heimbach, B.; Itten, R.; Liao, X.; Panos, E.; Pfister, S.; Schmidt, T.; Stahel, V.; Stolz, P.; Toggweiler, P.; Treyer, K.; Villeneuve, J.; Wade, A.; Weil, M.
2018. The international journal of life cycle assessment, 23 (8), 1716–1721. doi:10.1007/s11367-018-1496-y
Dendrite Growth in Mg Metal Cells Containing Mg(TFSI)2 /Glyme Electrolytes.
Ding, M. S.; Diemant, T.; Behm, R. J.; Passerini, S.; Giffin, G. A.
2018. Journal of the Electrochemical Society, 165 (10), A1983–A1990. doi:10.1149/2.1471809jes
Electrochemical behavior of LiV3O8 positive electrode in hybrid Li,Na–ion batteries.
Maletti, S.; Sarapulova, A.; Tsirlin, A. A.; Oswald, S.; Fauth, F.; Giebeler, L.; Bramnik, N. N.; Ehrenberg, H.; Mikhailova, D.
2018. Journal of power sources, 373, 1–10. doi:10.1016/j.jpowsour.2017.10.086
The influence of void space on ion transport in a composite cathode for all- solid-state batteries.
Hlushkou, D.; Reising, A. E.; Kaiser, N.; Spannenberger, S.; Schlabach, S.; Kato, Y.; Roling, B.; Tallarek, U.
2018. Journal of power sources, 396, 363–370. doi:10.1016/j.jpowsour.2018.06.041
Electrochemical behavior of Bi4B2O9 towards lithium-reversible conversion reactions without nanosizing.
Strauss, F.; Rousse, G.; Batuk, D.; Tang, M.; Salager, E.; Dražić, G.; Dominko, R.; Tarascon, J.-M.
2018. Physical chemistry, chemical physics, 20 (4), 2330–2338. doi:10.1039/C7CP07693B
A thermodynamic investigation of the Li–Sb system.
Beutl, A.; Henriques, D.; Motalov, V.; Cupid, D.; Markus, T.; Flandorfer, H.
2018. Journal of thermal analysis and calorimetry, 131 (3), 2673–2686. doi:10.1007/s10973-017-6795-1
Energy research with neutrons (ErwiN) and installation of a fast neutron powder diffraction option at the MLZ, Germany.
Heere, M.; Mühlbauer, M. J.; Schökel, A.; Knapp, M.; Ehrenberg, H.; Senyshyn, A.
2018. Journal of applied crystallography, 51, 591–595. doi:10.1107/S1600576718004223
Synthesis and characterization of Si nanoparticles wrapped by V₂O₅ nanosheets as a composite anode material for lithium-ion batteries.
Carbonari, G.; Maroni, F.; Birrozzi, A.; Tossici, R.; Croce, F.; Nobili, F.
2018. Electrochimica acta, 281, 676–683. doi:10.1016/j.electacta.2018.05.094
Silicon-based 3D electrodes for high power lithium-ion battery.
Zheng, Y.; Smyrek, P.; Rakebrandt, J.-H.; Seifert, H. J.; Pfleging, W.; Kubel, C.
2018. The 7th International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale : IEEE 3M-NANO 2017 : Shanghai, China, 7-11 August 2017 / 3M-NANO 2017, 61–64, IEEE, Piscataway (NJ). doi:10.1109/3M-NANO.2017.8286308
Laser-induced breakdown spectroscopy for studying the electrochemical impact of porosity variations in composite electrode materials.
Smyrek, P.; Zheng, Y.; Rakebrandt, J. H.; Seifert, H. J.; Pfleging, W.
2018. The 7th International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale : IEEE 3M-NANO 2017 : Shanghai, China, 7-11 August 2017 / 3M-NANO 2017, 65–68, IEEE, Piscataway (NJ). doi:10.1109/3M-NANO.2017.8286301
Electrochemical and structural investigations of different polymorphs of TiO 2 in magnesium and hybrid lithium/magnesium batteries.
Fu, Q.; Azmi, R.; Sarapulova, A.; Mikhailova, D.; Dsoke, S.; Missiul, A.; Trouillet, V.; Knapp, M.; Bramnik, N.; Ehrenberg, H.
2018. Electrochimica acta, 277, 20–29. doi:10.1016/j.electacta.2018.04.200
Influence of the doping ratio and the carbon coating content on the electrochemical performance of Co-doped SnO 2 for lithium-ion anodes.
Ma, Y.; Ma, Y.; Ulissi, U.; Ji, Y.; Streb, C.; Bresser, D.; Passerini, S.
2018. Electrochimica acta, 277, 100–109. doi:10.1016/j.electacta.2018.04.209
Hybrid electrolytes for lithium metal batteries.
Keller, M.; Varzi, A.; Passerini, S.
2018. Journal of power sources, 392, 206–225. doi:10.1016/j.jpowsour.2018.04.099
Impact of Cathode Material Particle Size on the Capacity of Bulk-Type All-Solid-State Batteries.
Strauss, F.; Bartsch, T.; de Biasi, L.; Kim, A.-Y.; Janek, J.; Hartmann, P.; Brezesinski, T.
2018. ACS energy letters, 3 (4), 992–996. doi:10.1021/acsenergylett.8b00275
A comparative study of crystalline and amorphous LiLaTiO as surface coating layers to enhance the electrochemical performance of LiNiCoAlO cathode.
Xu, C.-L.; Xiang, W.; Wu, Z.-G.; Li, Y.-C.; Xu, Y.-D.; Hua, W.-B.; Guo, X.-D.; Zhang, X.-B.; Zhong, B.-H.
2018. Journal of alloys and compounds, 740, 428–435. doi:10.1016/j.jallcom.2017.12.193
Understanding homogeneous hydrogen evolution reactivity and deactivation pathways of molecular molybdenum sulfide catalysts.
Dave, M.; Rajagopal, A.; Damm-Ruttensperger, M.; Schwarz, B.; Nägele, F.; Daccache, L.; Fantauzzi, D.; Jacob, T.; Streb, C.
2018. Sustainable energy & fuels, 2 (5), 1020–1026. doi:10.1039/C7SE00599G
High energy and high voltage integrated photo-electrochemical double layer capacitor.
Scalia, A.; Varzi, A.; Lamberti, A.; Tresso, E.; Jeong, S.; Jacob, T.; Passerini, S.
2018. Sustainable energy & fuels, 2 (5), 968–977. doi:10.1039/C8SE00003D
Electrochemical performance of nanosized MnO2 synthesized by redox route using biological reducing agents.
Abuzeid, H. M.; Hashem, A. M.; Kaus, M.; Knapp, M.; Indris, S.; Ehrenberg, H.; Mauger, A.; Julien, C. M.
2018. Journal of alloys and compounds, 746, 227–237. doi:10.1016/j.jallcom.2018.02.260
The Role of Carbon in Grain Refinement of Cast CrFeCoNi High-Entropy Alloys.
Liu, X. W.; Liu, L.; Liu, G.; Wu, X. X.; Lu, D. H.; Yao, J. Q.; Jiang, W. M.; Fan, Z. T.; Zhang, W. B.
2018. Metallurgical and materials transactions / A, 49 (6), 2151–2160. doi:10.1007/s11661-018-4549-8
Performance boost for primary magnesium cells using iron complexing agents as electrolyte additives.
Höche, D.; Lamaka, S. V.; Vaghefinazari, B.; Braun, T.; Petrauskas, R. P.; Fichtner, M.; Zheludkevich, M. L.
2018. Scientific reports, 8 (1), Art. Nr.: 7578. doi:10.1038/s41598-018-25789-8
Material- und Elektrodenentwicklung für Lithium-Ionen-Batterien.
Bauer, W.; Binder, J. R.; Müller, M.; Hoffmann, M. J.
2018. Jahresmagazin Werkstofftechnik, 2018, 114–120
Microporous Layer Degradation in Polymer Electrolyte Membrane Fuel Cells.
Liu, H.; George, M. G.; Ge, N.; Muirhead, D.; Shrestha, P.; Lee, J.; Banerjee, R.; Zeis, R.; Messerschmidt, M.; Scholta, J.; Krolla, P.; Bazylak, A.
2018. Journal of the Electrochemical Society, 165 (6), F3271-F3280. doi:10.1149/2.0291806jes
Towards High-Performance Aqueous Sodium-Ion Batteries: Stabilizing the Solid/Liquid Interface for NASICON-Type Na VTi(P) using Concentrated Electrolytes.
Zhang, H.; Jeong, S.; Qin, B.; Vieira Carvalho, D.; Buchholz, D.; Passerini, S.
2018. ChemSusChem, 11 (8), 1382–1389. doi:10.1002/cssc.201800194
Advanced materials and systems for electrochemical energy storage (EMRS/B 2017): Foreword.
Vlad, A.; Passerini, S.; Yao, Y.; Sun, Y.-K.
2018. Electrochimica acta, 271, 146–149. doi:10.1016/j.electacta.2018.03.128
Identifying the Mechanism of Continued Growth of the Solid-Electrolyte Interphase.
Single, F.; Latz, A.; Horstmann, B.
2018. ChemSusChem, 11 (12), 1950–1955. doi:10.1002/cssc.201800077
Structure and electrochemical properties of Na2±:XV3P2O13(x = 0 and 1): A promising cathode material for sodium-ion batteries.
Reddy, M. A.; Euchner, H.; Witter, R.; Clemens, O.
2018. Journal of materials chemistry / A, 6 (16), 6947–6958. doi:10.1039/C8TA00588E
Dielectric spectroscopy of Pyr 14 TFSI and Pyr 12O1 TFSI ionic liquids.
Jablonskas, D.; Ivanov, M.; Banys, J.; Giffin, G. A.; Passerini, S.
2018. Electrochimica acta, 274, 400–405. doi:10.1016/j.electacta.2018.04.104
Water decontamination by polyoxometalate-functionalized 3D-printed hierarchical porous devices.
Ji, Y.; Ma, Y.; Ma, Y.; Asenbauer, J.; Passerini, S.; Streb, C.
2018. Chemical communications, 54 (24), 3018–3021. doi:10.1039/C8CC00821C
Physical modeling of polymer-electrolyte membrane fuel cells: Understanding water management and impedance spectra.
Futter, G. A.; Gazdzicki, P.; Friedrich, K. A.; Latz, A.; Jahnke, T.
2018. Journal of power sources, 391, 148–161. doi:10.1016/j.jpowsour.2018.04.070
Direct Determination of Diffusion Coefficients in Commercial Li-Ion Batteries.
Cabañero, M. A.; Boaretto, N.; Röder, M.; Müller, J.; Kallo, J.; Latz, A.
2018. Journal of the Electrochemical Society, 165 (5), A847–A855. doi:10.1149/2.0301805jes
Reversible Delithiation of Disordered Rock Salt LiVO2.
Baur, C.; Chable, J.; Klein, F.; Chakravadhanula, V. S. K.; Fichtner, M.
2018. ChemElectroChem, 5 (11), 1484–1490. doi:10.1002/celc.201800189
Relevance of ion clusters for Li transport at elevated salt concentrations in [Pyr][FTFSI] ionic liquid-based electrolytes.
Brinkkötter, M.; Giffin, G. A.; Moretti, A.; Jeong, S.; Passerini, S.; Schönhoff, M.
2018. Chemical communications, 54 (34), 4278–4281. doi:10.1039/c8cc01416g
Volume Changes of Graphite Anodes Revisited : A Combined Operando X-ray Diffraction and In Situ Pressure Analysis Study.
Schweidler, S.; Biasi, L. de; Schiele, A.; Hartmann, P.; Brezesinski, T.; Janek, J.
2018. The journal of physical chemistry <Washington, DC> / C, 122 (16), 8829–8835. doi:10.1021/acs.jpcc.8b01873
Phase stability of a ductile single-phase BCC HfNbTaTiZr refractory high-entropy alloy.
Yao, J. Q.; Liu, X. W.; Gao, N.; Jiang, Q. H.; Li, N.; Liu, G.; Zhang, W. B.; Fan, Z. T.
2018. Intermetallics, 98, 79–88. doi:10.1016/j.intermet.2018.04.023
High electrochemical performance of 3D highly porous ZnNiCo₂O₄ microspheres as an electrode material for electrochemical energy storage.
Mariappan, C. R.; Kumar, V.; Azmi, R.; Esmezjan, L.; Indris, S.; Bruns, M.; Ehrenberg, H.
2018. CrystEngComm, 20 (15), 2159–2168. doi:10.1039/c7ce02161e
Phase equilibria and crystal structure relationships in the ternary Li-B-C system.
Milashius, V.; Pavlyuk, V.; Dmytriv, G.; Ehrenberg, H.
2018. Inorganic chemistry frontiers, 5 (4), 853–863. doi:10.1039/c7qi00787f
Addressing the energy sustainability of biowaste-derived hard carbon materials for battery electrodes.
Baldinelli, A.; Dou, X.; Buchholz, D.; Marinaro, M.; Passerini, S.; Barelli, L.
2018. Green chemistry, 20 (7), 1527–1537. doi:10.1039/c8gc00085a
High-Throughput Description of Infinite Composition-Structure-Property-Performance Relationships of Lithium-Manganese Oxide Spinel Cathodes.
Zhang, W. B.; Cupid, D. M.; Gotcu, P.; Chang, K.; Li, D.; Du, Y.; Seifert, H. J.
2018. Chemistry of materials, 30 (7), 2287–2298. doi:10.1021/acs.chemmater.7b05068
Aging in 18650-type Li-ion cells examined with neutron diffraction, electrochemical analysis and physico-chemical modeling.
Paul, N.; Keil, J.; Kindermann, F. M.; Schebesta, S.; Dolotko, O. V.; Mühlbauer, M. J.; Kraft, L.; Erhard, S. V.; Jossen, A.; Gilles, R.
2018. Journal of energy storage, 17, 383–394. doi:10.1016/j.est.2018.03.016
Corrigendum to ‘Modeling the degradation mechanisms of C6/LiFePO4 batteries’.
Li, D.; Danilov, D. L.; Zwikirsch, B.; Fichtner, M.; Yang, Y.; Eichel, R.-A.; Notten, P. H. L.
2018. Journal of power sources, 383, 164. doi:10.1016/j.jpowsour.2018.02.042
Influence of a silver salt on the nanostructure of a Au(111)/ionic liquid interface: an atomic force microscopy study and theoretical concepts.
Hoffmann, V.; Pulletikurthi, G.; Carstens, T.; Lahiri, A.; Borodin, A.; Schammer, M.; Horstmann, B.; Latz, A.; Endres, F.
2018. Physical chemistry, chemical physics, 20 (7), 4760–4771. doi:10.1039/C7CP08243F
The Issue of Metal Resources in Li-Ion Batteries for Electric Vehicles.
Weil, M.; Ziemann, S.; Peters, J.
2018. Behaviour of Lithium-Ion Batteries in Electric Vehicles. Ed.: G. Pistoia, 59–74, Springer International Publishing, Cham. doi:10.1007/978-3-319-69950-9_3
One-dimensional nanomaterials for energy storage.
Chen, C.; Fan, Y.; Gu, J.; Wu, L.; Passerini, S.; Mai, L.
2018. Journal of physics / D, 51 (11), Article no 113002. doi:10.1088/1361-6463/aaa98d
All-solid-state lithium-ion and lithium metal batteries - paving the way to large-scale production.
Schnell, J.; Günther, T.; Knoche, T.; Vieider, C.; Köhler, L.; Just, A.; Keller, M.; Passerini, S.; Reinhart, G.
2018. Journal of power sources, 382, 160–175. doi:10.1016/j.jpowsour.2018.02.062
Rare earth and transition metal based entropy stabilised perovskite type oxides.
Sarkar, A.; Djenadic, R.; Wang, D.; Hein, C.; Ralf Kautenburger; Clemens, O.; Hahn, H.
2018. Journal of the European Ceramic Society, 38 (5), 2318–2327. doi:10.1016/j.jeurceramsoc.2017.12.058
Perspectives of automotive battery R&D in China, Germany, Japan, and the USA.
Bresser, D.; Hosoi, K.; Howell, D.; Li, H.; Zeisel, H.; Amine, K.; Passerini, S.
2018. Journal of power sources, 382, 176–178. doi:10.1016/j.jpowsour.2018.02.039
Local-structure change rendered by electronic localization-delocalization transition in cerium-based metallic glasses.
Luo, Q.; Schwarz, B.; Swarbrick, J. C.; Bednarčik, J.; Zhu, Y.; Tang, M.; Zheng, L.; Li, R.; Shen, J.; Eckert, J.
2018. Physical review / B, 97 (6), Art.Nr. 064104. doi:10.1103/PhysRevB.97.064104
Modeling the potential impact of lithium recycling from EV batteries on lithium demand : A dynamic MFA approach.
Ziemann, S.; Müller, D. B.; Schebek, L.; Weil, M.
2018. Resources, conservation and recycling, 133, 76–85. doi:10.1016/j.resconrec.2018.01.031
Structure formation and surface chemistry of ionic liquids on model electrode surfaces - Model studies for the electrode | electrolyte interface in Li-ion batteries.
Buchner, F.; Uhl, B.; Forster-Tonigold, K.; Bansmann, J.; Groß, A.; Behm, R. J.
2018. The journal of chemical physics, 148 (19), Art. Nr.: 193821. doi:10.1063/1.5012878
A Novel Surface Texture Shape for Directional Friction Control.
Lu, P.; Wood, R. J. K.; Gee, M. G.; Wang, L.; Pfleging, W.
2018. Tribology letters, 66 (1), 51. doi:10.1007/s11249-018-0995-0
Laser in battery manufacturing: impact of intrinsic and artificial electrode porosity on chemical degradation and battery lifetime.
Smyrek, P.; Zheng, Y.; Seifert, H. J.; Pfleging, W.
2018. U. Klotzbach, K. Washio & R. Kling (Hrsg.), Laser-based Micro- and Nanoprocessing XII, San Francisco, United States, 27 January–1 February 2018, 47 S., SPIE, Bellingham, WA. doi:10.1117/12.2288440
Structure and hardness of B2 ordered refractory AlNbTiVZr high entropy alloy after high-pressure torsion.
Stepanov, N. D.; Yurchenko, N. Y.; Gridneva, A. O.; Zherebtsov, S. V.; Ivanisenko, Y. V.; Salishchev, G. A.
2018. Materials science and engineering / A, 716, 308–315. doi:10.1016/j.msea.2018.01.061
Evaluation of guar gum-based biopolymers as binders for lithium-ion batteries electrodes.
Carvalho, D. V.; Loeffler, N.; Hekmatfar, M.; Moretti, A.; Kim, G.-T.; Passerini, S.
2018. Electrochimica acta, 265, 89–97. doi:10.1016/j.electacta.2018.01.083
Diffusion mechanism in the superionic conductor Li₄PS₄I studied by first-principles calculations.
Sicolo, S.; Kalcher, C.; Sedlmaier, S. J.; Janek, J.; Albe, K.
2018. Solid state ionics, 319, 83–91. doi:10.1016/j.ssi.2018.01.046
New Electrode and Electrolyte Configurations for Lithium-Oxygen Battery.
Ulissi, U.; Elia, G. A.; Jeong, S.; Reiter, J.; Tsiouvaras, N.; Passerini, S.; Hassoun, J.
2018. Chemistry - a European journal, 24 (13), 3178–3185. doi:10.1002/chem.201704293
Molybdenum Doping Augments Platinum-Copper Oxygen Reduction Electrocatalyst.
Luo, Y.; Kirchhoff, B.; Fantauzzi, D.; Calvillo, L.; Estudillo-Wong, L. A.; Granozzi, G.; Jacob, T.; Alonso-Vante, N.
2018. ChemSusChem, 11 (1), 193–201. doi:10.1002/cssc.201701822
Beyond Insertion for Na-Ion Batteries : Nanostructured Alloying and Conversion Anode Materials.
Zhang, H.; Hasa, I.; Passerini, S.
2018. Advanced energy materials, 8 (17), Art. Nr.: 1702582. doi:10.1002/aenm.201702582
Complementary Strategies Toward the Aqueous Processing of High-Voltage LiNiMnO₄ Lithium-Ion Cathodes.
Kuenzel, M.; Bresser, D.; Diemant, T.; Carvalho, D. V.; Kim, G.-T.; Behm, R. J.; Passerini, S.
2018. ChemSusChem, 11 (3), 562–573. doi:10.1002/cssc.201702021
Performance Improvement of V-Fe-Cr-Ti Solid State Hydrogen Storage Materials in Impure Hydrogen Gas.
Ulmer, U.; Oertel, D.; Diemant, T.; Bonatto Minella, C.; Bergfeldt, T.; Dittmeyer, R.; Behm, R. J.; Fichtner, M.
2018. ACS applied materials & interfaces, 10 (2), 1662–1671. doi:10.1021/acsami.7b13541
Communication : Investigation of ion aggregation in ionic liquids and their solutions with lithium salt under high pressure.
Pilar, K.; Balédent, V.; Zeghal, M.; Judeinstein, P.; Jeong, S.; Passerini, S.; Greenbaum, S.
2018. The journal of chemical physics, 148 (3), Art.Nr. 031102. doi:10.1063/1.5016049
Modeling the degradation mechanisms of C₆/LiFePO₄ batteries.
Li, D.; Danilov, D. L.; Zwikirsch, B.; Fichtner, M.; Yang, Y.; Eichel, R. A.; Notten, P. H. L.
2018. Journal of power sources, 375, 106–117. doi:10.1016/j.jpowsour.2017.11.049
Binder-induced surface structure evolution effects on Li-ion battery performance.
Rezvani, S. J.; Pasqualini, M.; Witkowska, A.; Gunnella, R.; Birrozzi, A.; Minicucci, M.; Rajantie, H.; Copley, M.; Nobili, F.; Di Cicco, A.
2018. Applied surface science, 435, 1029–1036. doi:10.1016/j.apsusc.2017.10.195
Optimized hard carbon derived from starch for rechargeable seawater batteries.
Kim, Y.; Kim, J.-K.; Vaalma, C.; Bae, G. H.; Kim, G.-T.; Passerini, S.; Kim, Y.
2018. Carbon, 129, 564–571. doi:10.1016/j.carbon.2017.12.059
Connection between Lithium Coordination and Lithium Diffusion in [Pyr][FTFSI] Ionic Liquid Electrolytes.
Giffin, G. A.; Moretti, A.; Jeong, S.; Pilar, K.; Brinkkötter, M.; Greenbaum, S. G.; Schönhoff, M.; Passerini, S.
2018. ChemSusChem, 11 (12), 1981–1989. doi:10.1002/cssc.201702288
A multiple electrolyte concept for lithium-metal batteries.
Lecce, D. D.; Sharova, V.; Jeong, S.; Moretti, A.; Passerini, S.
2018. Solid state ionics, 316, 66–74. doi:10.1016/j.ssi.2017.12.012
Effects of compression on water distribution in gas diffusion layer materials of PEMFC in a point injection device by means of synchrotron X-ray imaging.
Ince, U. U.; Markötter, H.; George, M. G.; Liu, H.; Ge, N.; Lee, J.; Alrwashdeh, S. S.; Zeis, R.; Messerschmidt, M.; Scholta, J.; Bazylak, A.; Manke, I.
2018. International journal of hydrogen energy, 43 (1), 391–406. doi:10.1016/j.ijhydene.2017.11.047
Research Update : Hard carbon with closed pores from pectin-free apple pomace waste for Na-ion batteries.
Dou, X.; Geng, C.; Buchholz, D.; Passerini, S.
2018. APL materials, 6 (4), Art.Nr. 047501. doi:10.1063/1.5013132
Low-Polarization Lithium-Oxygen Battery Using [DEME][TFSI] Ionic Liquid Electrolyte.
Ulissi, U.; Elia, G. A.; Jeong, S.; Mueller, F.; Reiter, J.; Tsiouvaras, N.; Sun, Y.-K.; Scrosati, B.; Passerini, S.; Hassoun, J.
2018. ChemSusChem, 11 (1), 229–236. doi:10.1002/cssc.201701696
Na₃Si₂YZrPO -ionic liquid hybrid electrolytes : An approach for realizing solid-state sodium-ion batteries?.
Torre-Gamarra, C. de la; Appetecchi, G. B.; Ulissi, U.; Varzi, A.; Varez, A.; Passerini, S.
2018. Journal of power sources, 383, 157–163. doi:10.1016/j.jpowsour.2017.12.037
Structural and Electrochemical Characterization of ZnFeO : Effect of Aliovalent Doping on the Li⁺ Storage Mechanism.
Giuli, G.; Eisenmann, T.; Bresser, D.; Trapananti, A.; Asenbauer, J.; Mueller, F.; Passerini, S.
2018. Materials, 11 (1), Art.Nr. 49. doi:10.3390/ma11010049
EDTA as chelating agent for sol-gel synthesis of spinel LiMn₂O₄ cathode material for lithium batteries.
Hashem, A. M.; Abdel-Ghany, A. E.; Abuzeid, H. M.; El-Tawil, R. S.; Indris, S.; Ehrenberg, H.; Mauger, A.; Julien, C. M.
2018. Journal of alloys and compounds, 737, 758–766. doi:10.1016/j.jallcom.2017.12.153
Chemomechanical fatigue of LiMnAlO electrodes for lithium-ion batteries.
Chen, D.; Kramer, D.; Mönig, R.
2018. Electrochimica acta, 259, 939–948. doi:10.1016/j.electacta.2017.10.179
Comparative study of imide-based Li salts as electrolyte additives for Li-ion batteries.
Sharova, V.; Moretti, A.; Diemant, T.; Varzi, A.; Behm, R. J.; Passerini, S.
2018. Journal of power sources, 375, 43–52. doi:10.1016/j.jpowsour.2017.11.045
Providing a common base for life cycle assessments of Li-Ion batteries.
Peters, J. F.; Weil, M.
2018. Journal of cleaner production, 171, 704–713. doi:10.1016/j.jclepro.2017.10.016
On the interaction of carbon electrodes and non conventional electrolytes in high-voltage electrochemical capacitors.
Moreno-Fernández, G.; Schütter, C.; Rojo, J. M.; Passerini, S.; Balducci, A.; Centeno, T. A.
2018. Journal of solid state electrochemistry, 22 (3), 717–725. doi:10.1007/s10008-017-3809-7
Surface analytical approaches to reliably characterize lithium ion battery electrodes.
Azmi, R.; Trouillet, V.; Strafela, M.; Ulrich, S.; Ehrenberg, H.; Bruns, M.
2018. Surface and interface analysis, 50 (1), 43–51. doi:10.1002/sia.6330
3D Porous Cu–Zn Alloys as Alternative Anode Materials for Li-Ion Batteries with Superior Low T Performance.
Varzi, A.; Mattarozzi, L.; Cattarin, S.; Guerriero, P.; Passerini, S.
2018. Advanced energy materials, 8 (1), Art.Nr. 1701706. doi:10.1002/aenm.201701706
Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes.
Wenzel, S.; Sedlmaier, S. J.; Dietrich, C.; Zeier, W. G.; Janek, J.
2018. Solid state ionics, 318, 102–112. doi:10.1016/j.ssi.2017.07.005
2017
Rare Earth Borohydrides—Crystal Structures and Thermal Properties.
Frommen, C.; Sørby, M.; Heere, M.; Humphries, T.; Olsen, J.; Hauback, B.
2017. Energies, 10 (12), Article Number 2115. doi:10.3390/en10122115
Hazard statements: looking for alternatives to toxicity evaluation using LCA.
Rodriguez-Garcia, G.; Braun, J.; Peters, J.; Weil, M.
2017. Matériaux & techniques, 105 (5-6), 517. doi:10.1051/mattech/2018019
A hybrid electrolyte for long-life semi-solid-state lithium sulfur batteries.
Gu, S.; Huang, X.; Wang, Q.; Jin, J.; Wang, Q.; Wen, Z.; Qian, R.
2017. Journal of materials chemistry / A, 5 (27), 13971–13975. doi:10.1039/C7TA04017B
Polysulfides Formation in Different Electrolytes from the Perspective of X-ray Absorption Spectroscopy.
Dominko, R.; Vizintin, A.; Aquilanti, G.; Stievano, L.; Helen, M. J.; Munnangi, A. R.; Fichtner, M.; Arcon, I.
2017. Journal of the Electrochemical Society, 165 (1), A5014–A5019. doi:10.1149/2.0151801jes
Radical Decomposition of Ether-Based Electrolytes for Li-S Batteries.
Lodovico, L.; Varzi, A.; Passerini, S.
2017. Journal of the Electrochemical Society, 164 (9), A1812-A1819. doi:10.1149/2.0311709jes
An Efficient and Durable Electrocatalyst for Hydrogen Production Based on Earth-Abundant Oxide-Graphene Composite.
Galal, A.; Hassan, H. K.; Atta, N. F.; Jacob, T.
2017. ChemistrySelect, 2 (31), 10261–10270. doi:10.1002/slct.201701408
Development of a three-stage drying profile based on characteristic drying stages for lithium-ion battery anodes.
Jaiser, S.; Friske, A.; Baunach, M.; Scharfer, P.; Schabel, W.
2017. Drying technology, 35 (10), 1266–1275. doi:10.1080/07373937.2016.1248975
Impact of drying conditions and wet film properties on adhesion and film solidification of lithium-ion battery anodes.
Jaiser, S.; Sanchez Salach, N.; Baunach, M.; Scharfer, P.; Schabel, W.
2017. Drying technology, 35 (15), 1807–1817. doi:10.1080/07373937.2016.1276584
Lithium-Magnesium Hybrid Battery with Vanadium Oxychloride as Electrode Material.
Bonatto Minella, C.; Gao, P.; Zhao-Karger, Z.; Diemant, T.; Behm, R. J.; Fichtner, M.
2017. ChemistrySelect, 2 (25), 7558–7564. doi:10.1002/slct.201701595
Neutron imaging with fission and thermal neutrons at NECTAR at MLZ.
Mühlbauer, M. J.; Bücherl, T.; Kellermeier, M.; Knapp, M.; Makowska, M.; Schulz, M.; Zimnik, S.; Ehrenberg, H.
2017. Physica / B, 551, 359–363. doi:10.1016/j.physb.2017.11.088
Revealing SEI Morphology: In-Depth Analysis of a Modeling Approach.
Single, F.; Horstmann, B.; Latz, A.
2017. Journal of the Electrochemical Society, 164 (11), E3132–E3145. doi:10.1149/2.0121711jes
Platinum overlayers on Pt x Ru electrodes: Tailoring the ORR activity by lateral strain and ligand effects.
Heider, E. A.; Jacob, T.; Kibler, L. A.
2017. Journal of electroanalytical chemistry, 819, 289–295. doi:10.1016/j.jelechem.2017.10.063
Investigation and Optimization of the Accuracy of Current Sensors for High Voltage LFP-Batteries.
Bischof, S.; Blank, T.; Weber, M.
2017. PCIM Europe : International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nürnberg, May 16-18, 2017.Proceedings, 731–737, VDE-Verl., Berlin
Comparison and evaluation of modular multilevel converter topologies for Li-ion battery systems.
Luh, M.; Blank, T.; Weber, M.
2017. PCIM Europe : International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nürnberg, May 16-18, 2017.Proceedings, 1671–1678, VDE-Verl., Berlin
On the platinum-oxide formation under gas-phase and electrochemical conditions.
Farkas, A.; Fantauzzi, D.; Mueller, J. E.; Zhu, T.; Papp, C.; Steinrück, H.-P.; Jacob, T.
2017. Journal of electron spectroscopy and related phenomena, 221, 44–57. doi:10.1016/j.elspec.2017.06.005
Experimental Analysis of Thermal Runaway in 18650 Cylindrical Li-Ion Cells Using an Accelerating Rate Calorimeter.
Lei, B.; Zhao, W.; Ziebert, C.; Uhlmann, N.; Rohde, M.; Seifert, H.
2017. Batteries, 3 (2), 14. doi:10.3390/batteries3020014
SEI Dynamics in Metal Oxide Conversion Electrodes of Li-Ion Batteries.
Rezvani, S. J.; Nobili, F.; Gunnella, R.; Ali, M.; Tossici, R.; Passerini, S.; Di Cicco, A.
2017. The journal of physical chemistry <Washington, DC> / C, 121 (47), 26379–26388. doi:10.1021/acs.jpcc.7b08259
Between Scylla and Charybdis: Balancing Among Structural Stability and Energy Density of Layered NCM Cathode Materials for Advanced Lithium-Ion Batteries.
de Biasi, L.; Kondrakov, A. O.; Geßwein, H.; Brezesinski, T.; Hartmann, P.; Janek, J.
2017. The journal of physical chemistry <Washington, DC> / C, 121 (47), 26163–26171. doi:10.1021/acs.jpcc.7b06363
ZnO/ZnFe₂O₄/N-doped C micro-polyhedrons with hierarchical hollow structure as high-performance anodes for lithium-ion batteries.
Ma, Y.; Ma, Y.; Geiger, D.; Kaiser, U.; Zhang, H.; Kim, G.-T.; Diemant, T.; Behm, R. J.; Varzi, A.; Passerini, S.
2017. Nano energy, 42, 341–352. doi:10.1016/j.nanoen.2017.11.030
Rational Development of Neutral Aqueous Electrolytes for Zinc-Air Batteries.
Clark, S.; Latz, A.; Horstmann, B.
2017. ChemSusChem, 10 (23), 4735–4747. doi:10.1002/cssc.201701468
Manganese silicate hollow spheres enclosed in reduced graphene oxide as anode for lithium-ion batteries.
Ma, Y.; Ulissi, U.; Bresser, D.; Ma, Y.; Ji, Y.; Passerini, S.
2017. Electrochimica acta, 258, 535–543. doi:10.1016/j.electacta.2017.11.096
Evaluation of the effect of the PV plant size on the efficiency of household Li-Ion battery storage systems.
Munzke, N.; Schwarz, B.; Büchle, F.
2017. Proceedings of the 33rd European PV Solar Energy Conference and Exhibition. Amsterdam, NL, September 25-29, 2017, 2047–2051
Online and Offline PV Power Forecasts for Optimal Control of Storage Systems.
Barry, J.; Thomas, J.
2017. Proceedings of the 33rd European PV Solar Energy Conference and Exhibition. Amsterdam, NL, September 25-29, 2017, 2729–2732
Si- and Sn-containing SiOCN-based nanocomposites as anode materials for lithium ion batteries: synthesis, thermodynamic characterization and modeling.
Rohrer, J.; Vrankovic, D.; Cupid, D.; Riedel, R.; Seifert, H. J.; Albe, K.; Graczyk-Zajac, M.
2017. International journal of materials research, 108 (11), 920–932. doi:10.3139/146.111517
LiBC₃: a new borocarbide based on graphene and heterographene networks.
Milashius, V.; Pavlyuk, V.; Kluziak, K.; Dmytriv, G.; Ehrenberg, H.
2017. Acta crystallographica / C, 73 (11), 984–989. doi:10.1107/S2053229617015182
Evaluation of Leadframe Power Modules for Automotive Drive Applications.
An, B. N.; Kempf, M.; Meisser, M.; Demattio, H.; Leyrer, B.; Blank, T.; Kolb, J.; Weber, M.
2017. PCIM Europe : International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nürnberg, May 16-18, 2017.Proceedings, 974–981, VDE-Verl., Berlin
Growth mechanism and electrochemical properties of hierarchical hollow SnO2 microspheres with a “chestnut” morphology.
Hu, H.; Wu, L.; Gebhardt, P.; Zhang, X.; Cherevan, A.; Gerke, B.; Pöttgen, R.; Balducci, A.; Passerini, S.; Eder, D.
2017. CrystEngComm, 19 (43), 6454–6463. doi:10.1039/C7CE01288H
Shape-controlled synthesis of hierarchically layered lithium transition-metal oxide cathode materials by shear exfoliation in continuous stirred-tank reactors.
Hua, W.; Wu, Z.; Chen, M.; Knapp, M.; Guo, X.; Indris, S.; Binder, J. R.; Bramnik, N. N.; Zhong, B.; Guo, H.; Chou, S.; Kang, Y.-M.; Ehrenberg, H.
2017. Journal of materials chemistry / A, 5 (48), 25391–25400. doi:10.1039/C7TA08073E
Impacts on load distribution and ageing in Lithium-ion home storage systems.
Grün, T.; Stella, K. A.; Wollersheim, O.
2017. Energy procedia, 135, 236–248. doi:10.1016/j.egypro.2017.09.508
Phase diagram, thermodynamic investigations, and modelling of systems relevant to lithium-ion batteries.
Fürtauer, S.; Li, D.; Henriques, D.; Beutl, A.; Giel, H.; Cupid, D.; Markus, T.; Flanorfer, H.
2017. International journal of materials research, 108 (11), 887–903. doi:10.3139/146.111561
Enthalpies of formation of layered LiNiₓMnₓCo₁₋₂ₓO₂ (0 ≤ x ≤ 0.5) compounds as lithium ion battery cathode materials.
Masoumi, M.; Cupid, D. M.; Reichmann, T. L.; Chang, K.; Music, D.; Schneider, J. M.; Seifert, H. J.
2017. International journal of materials research, 108 (11), 869–878. doi:10.3139/146.111553
Dependence of the constitution, microstructure and electrochemical behaviour of magnetron sputtered Li-Ni-Mn-Co-O thin film cathodes for lithium-ion batteries on the working gas pressure and annealing conditions.
Strafela, M.; Fischer, J.; Music, D.; Chang, K.; Schneider, J.; Leiste, H.; Rinke, M.; Bergfeldt, T.; Seifert, H. J.; Ulrich, S.
2017. International journal of materials research, 108 (11), 879–886. doi:10.3139/146.111552
Thermochemical stability of Li-Cu-O ternarycompounds stable at room temperature analyzed by experimental and theoretical methods.
Lepple, M.; Rohrer, J.; Adam, R.; Cupid, D. M.; Rafaja, D.; Albe, K.; Seifert, H. J.
2017. International journal of materials research, 108 (11), 959–970. doi:10.3139/146.111560
Interlaboratory study of the heat capacity of LiNi1/3Mn1/3Co1/3O2 (NMC111) with layered structure.
Cupid, D. M.; Gotcu, P.; Beutl, A.; Bergfeldt, T.; Giel, H.; Henriques, D.; Kozlov, A.; Masoumi, M.; Seidel, J.; Flandorfer, H.; Markus, T.; Mertens, F.; Schmid-Fetzer, R.; Seifert, H. J.
2017. International journal of materials research, 108 (11), 1008–1021. doi:10.3139/146.111571
Coexistence of conversion and intercalation mechanisms in lithium ion batteries: Consequences for microstructure and interaction between the active material and electrolyte.
Adam, R.; Lepple, M.; Mayer, N. A.; Cupid, D. M.; Qian, Y.; Niehoff, P.; Schappacher, F. M.; Wadewitz, D.; Balachandran, G.; Bhaskar, A.; Bramnik, N.; Klemm, V.; Ahrens, E.; Giebeler, L.; Fauth, F.; Popescuh, C. A.; Seifert, H. J.; Winter, M.; Ehrenberg, H.; Rafaja, D.
2017. International journal of materials research, 108 (11), 971–983. doi:10.3139/146.111509
Intercalation and Deintercalation of Lithium at the Ionic Liquid–Graphite(0001) Interface.
Buchner, F.; Kim, J.; Adler, C.; Bozorgchenani, M.; Bansmann, J.; Behm, R. J.
2017. The journal of physical chemistry letters, 8, 5804–5809. doi:10.1021/acs.jpclett.7b02530
Theoretical Studies on the Charging and Discharging of Poly(acrylonitrile)-Based Lithium-Sulfur Batteries.
Zhu, T.; Mueller, J. E.; Hanauer, M.; Sauter, U.; Jacob, T.
2017. ChemElectroChem, 4 (11), 2975–2980. doi:10.1002/celc.201700549
Toward greener lithium-ion batteries: Aqueous binder-based LiNi 0.4 Co 0.2 Mn 0.4 O 2 cathode material with superior electrochemical performance.
Chen, Z.; Kim, G.-T.; Chao, D.; Loeffler, N.; Copley, M.; Lin, J.; Shen, Z.; Passerini, S.
2017. Journal of power sources, 372, 180–187. doi:10.1016/j.jpowsour.2017.10.074
Local Structures and Li Ion Dynamics in a LiSnPS-Based Composite Observed by Multinuclear Solid-State NMR Spectroscopy.
Kaus, M.; Stöffler, H.; Yavuz, M.; Zinkevich, T.; Knapp, M.; Ehrenberg, H.; Indris, S.
2017. The journal of physical chemistry <Washington, DC> / C, 121 (42), 23370–23376. doi:10.1021/acs.jpcc.7b08350
Effect of Titanium Substitution in a P2-NaCoTiO Cathode Material on the Structural and Electrochemical Properties.
Sabi, N.; Sarapulova, A. E.; Indris, S.; Ehrenberg, H.; Alami, J.; Saadoune, I.
2017. ACS applied materials & interfaces, 9 (43), 37778–37785. doi:10.1021/acsami.7b11636
From Nanoscale to Microscale : Crossover in the Diffusion Dynamics within Two Pyrrolidinium-Based Ionic Liquids.
Casalegno, M.; Raos, G.; Appetecchi, G. B.; Passerini, S.; Castiglione, F.; Mele, A.
2017. The journal of physical chemistry letters, 8 (20), 5196–5202. doi:10.1021/acs.jpclett.7b02431
Recent advances in hydrogen storage using catalytically and chemically modified graphene nanocomposites.
Nagar, R.; Vinayan, B. P.; Samantaray, S. S.; Ramaprabhu, S.
2017. Journal of materials chemistry / A, 44 (5), 22897–22912. doi:10.1039/C7TA05068B
Performance and Ageing Robustness of Graphite/NMC Pouch Prototypes Manufactured through Eco-Friendly Materials and Processes.
Loeffler, N.; Kim, G.; Passerini, S.; Gutierrez, C.; Cendoya, I.; De Meatza, I.; Alessandrini, F.; Appetecchi, G. B.
2017. ChemSusChem, 10 (18), 3581–3587. doi:10.1002/cssc.201701087
Magnesium-sulfur battery: its beginning and recent progress.
Zhao-Karger, Z.; Fichtner, M.
2017. MRS communications, 1–15. doi:10.1557/mrc.2017.101
Structural Motifs for Modeling Sulfur-Poly(acrylonitrile) Composite Materials in Sulfur-Lithium Batteries.
Zhu, T.; Mueller, J. E.; Hanauer, M.; Sauter, U.; Jacob, T.
2017. ChemElectroChem, 4 (10), 2494–2499. doi:10.1002/celc.201700428
Aqueous Processing of Na0.44MnO2 Cathode Material for the Development of Greener Na-Ion Batteries.
Dall’Asta, V.; Buchholz, D.; Chagas, L. G.; Dou, X.; Ferrara, C.; Quartarone, E.; Tealdi, C.; Passerini, S.
2017. ACS applied materials & interfaces, 9 (40), 34891–34899. doi:10.1021/acsami.7b09464
The Impacts of Microporous Layer Degradation on Liquid Water Distributions in Polymer Electrolyte Membrane Fuel Cells Using Synchrotron Imaging.
Liu, H.; George, M. G.; Zeis, R.; Messerschmidt, M.; Scholta, J.; Bazylak, A.
2017. ECS transactions, 80 (8), 155–164. doi:10.1149/08008.0155ecst
Differential Electrochemical Mass Spectrometry in Lithium Battery Research.
Schiele, A.; Sommer, H.; Brezesinski, T.; Janek, J.; Berkes, B.
2017. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Hrsg.: J. Reedijk, Elsevier, Amsterdam. doi:10.1016/B978-0-12-409547-2.13293-7
Charge Transfer-Induced Lattice Collapse in Ni-Rich NCM Cathode Materials during Delithiation.
Kondrakov, A. O.; Geßwein, H.; Galdina, K.; De Biasi, L.; Meded, V.; Filatova, E. O.; Schumacher, G.; Wenzel, W.; Hartmann, P.; Brezesinski, T.; Janek, J.
2017. The journal of physical chemistry <Washington, DC> / C, 121 (44), 24381–24388. doi:10.1021/acs.jpcc.7b06598
Embroidered Copper Microwire Current Collector for Improved Cycling Performance of Silicon Anodes in Lithium-Ion Batteries.
Breitung, B.; Aguiló-Aguayo, N.; Bechtold, T.; Hahn, H.; Janek, J.; Brezesinski, T.
2017. Scientific reports, 7, 13010. doi:10.1038/s41598-017-13261-y
The Critical Role of Fluoroethylene Carbonate in the Gassing of Silicon Anodes for Lithium-Ion Batteries.
Alexander Schiele; Ben Breitung; Toru Hatsukade; Balázs B. Berkes; Pascal Hartmann; Jürgen Janek; Torsten Brezesinski.
2017. ACS energy letters, 2 (10), 2228–2233. doi:10.1021/acsenergylett.7b00619
Phosphoric Acid Invasion in High Temperature PEM Fuel Cell Gas Diffusion Layers.
Bevilacqua, N.; George, M. G.; Galbiati, S.; Bazylak, A.; Zeis, R.
2017. Electrochimica acta, 257, 89–98. doi:10.1016/j.electacta.2017.10.054
The use of anisotropic texturing for control of directional friction.
Lu, P.; Wood, R. J. K.; Gee, M. G.; Wang, L.; Pfleging, W.
2017. Tribology international, 113, 169–181. doi:10.1016/j.triboint.2017.02.005
Laser-Materials Processing for Energy Storage Applications.
Kim, H.; Smyrek, P.; Zheng, Y.; Pfleging, W.; Piqué, A.
2017. Pulsed Laser Ablation - Advances and Applications in Nanoparticles and Nanostructuring Thin Films. Ed.: I. N. Mihailescu, 499–544, Pan Stanford Publishing Pte Ltd, Singapore. doi:10.4032/9781315185231
Delithiation/relithiation process of LiCoMnO₄ spinel as 5 V electrode material.
Dräger, C.; Sigel, F.; Indris, S.; Mikhailova, D.; Pfaffmann, L.; Knapp, M.; Ehrenberg, H.
2017. Journal of power sources, 371, 55–64. doi:10.1016/j.jpowsour.2017.10.039
Stability of NASICON materials against water and CO₂ uptake.
Guin, M.; Indris, S.; Kaus, M.; Ehrenberg, H.; Tietz, F.; Guillon, O.
2017. Solid state ionics, 302, 102–106. doi:10.1016/j.ssi.2016.11.006
Pseudocapacitance of Mesoporous Spinel-Type MCo₂O₄ (M = Co, Zn, and Ni) Rods Fabricated by a Facile Solvothermal Route.
Kumar, V.; Mariappan, C. R.; Azmi, R.; Moock, D.; Indris, S.; Bruns, M.; Ehrenberg, H.; Vijaya Prakash, G.
2017. ACS omega, 2 (9), 6003–6013. doi:10.1021/acsomega.7b00709
Micron‐Sized Pored Membranes Based on Polyvinylidene Difluoride Hexafluoropropylene Prepared by Phase Inversion Techniques.
Hofmann, A.; Thißen, E.; Migeot Matthias; Bohn, N.; Dietrich, S.; Hanemann, T.
2017. Polymers, 9 (10), 489/1–12. doi:10.3390/polym9100489
Influence of electrochemical cycling on the rheo-impedance of anolytes for Li-based Semi Solid Flow Batteries.
Narayanan, A.; Wijnperlé, D.; Mugele, F.; Buchholz, D.; Vaalma, C.; Dou, X.; Passerini, S.; Duits, M. H. G.
2017. Electrochimica acta, 251, 388–395. doi:10.1016/j.electacta.2017.08.022
Evaluation of Carbon-Coated Graphite as a Negative Electrode Material for Li-Ion Batteries.
Sharova, V.; Moretti, A.; Giffin, G. A.; Carvalho, D. V.; Passerini, S.
2017. C &#x2013; journal of carbon research, 3 (3), 22. doi:10.3390/c3030022
Lithium ion conductivity in Li₂S-P₂S₅ glasses-building units and local structure evolution during the crystallization of superionic conductors Li₃PS₄, Li₇P₃S₁₁ and Li₄P₂S₇.
Dietrich, C.; Weber, D. A.; Sedlmaier, S. J.; Indris, S.; Culver, S. P.; Walter, D.; Janek, J.; Zeier, W. G.
2017. Journal of materials chemistry / A, 5 (34), 18111–18119. doi:10.1039/c7ta06067j
Understanding the lithiation/delithiation process in SnP₂O₇ anode material for lithium-ion batteries.
Bezza, I.; Trouillet, V.; Fiedler, A.; Bruns, M.; Indris, S.; Ehrenberg, H.; Saadoune, I.
2017. Electrochimica acta, 252, 446–452. doi:10.1016/j.electacta.2017.09.023
Direct writing of a conducting polymer pattern in aqueous solution by using an ultrashort laser pulse.
Agarwal, N.; Ryu, H.; Mangang, M.; Pfleging, W.; Kim, J.
2017. RSC Advances, 7 (61), 38565–38569. doi:10.1039/c7ra05195f
Intricacies of the Co3+ spin state in Sr2Co0.5Ir0.5 O4: An x-ray absorption and magnetic circular dichroism study.
Agrestini, S.; Kuo, C.-Y.; Mikhailova, D.; Chen, K.; Ohresser, P.; Pi, T. W.; Guo, H.; Komarek, A. C.; Tanaka, A.; Hu, Z.; Tjeng, L. H.
2017. Physical review / B, 95 (24), Art. Nr. 245131. doi:10.1103/PhysRevB.95.245131
Comprehensive Insights into the Thermal Stability, Biodegradability, and Combustion Chemistry of Pyrrolidinium-Based Ionic Liquids.
Eshetu, G. G.; Jeong, S.; Pandard, P.; Lecocq, A.; Marlair, G.; Passerini, S.
2017. ChemSusChem, 10 (15), 3146–3159. doi:10.1002/cssc.201701006
Ultrafast Ionic Liquid-Assisted Microwave Synthesis of SnO Microflowers and Their Superior Sodium-Ion Storage Performance.
Qin, B.; Zhang, H.; Diemant, T.; Geiger, D.; Raccichini, R.; Behm, R. J.; Kaiser, U.; Varzi, A.; Passerini, S.
2017. ACS applied materials & interfaces, 9 (32), 26797–26804. doi:10.1021/acsami.7b06230
1D nanobar-like LiNiCoMnO as a stable cathode material for lithium-ion batteries with superior long-term capacity retention and high rate capability.
Chen, Z.; Chao, D.; Liu, J.; Copley, M.; Lin, J.; Shen, Z.; Kim, G.-T.; Passerini, S.
2017. Journal of materials chemistry / A, 5 (30), 15669–15675. doi:10.1039/c7ta02888a
High-Throughput in Situ Pressure Analysis of Lithium-Ion Batteries.
Schiele, A.; Hatsukade, T.; Berkes, B. B.; Hartmann, P.; Brezesinski, T.; Janek, J.
2017. Analytical chemistry, 89 (15), 8122–8128. doi:10.1021/acs.analchem.7b01760
Li-Ionen Heimspeichersysteme: Performance auf dem Prüfstand.
Munzke, N.; Schwarz, B.; Büchle, F.; Barry, J.
2017. 32. Symposium Photovoltaische Solarenergie, Bad Staffelstein, 8.-10.März 2017. Tagungsband, Ostbayerisches Technologie-Transfer-Institut e.V. (OTTI), Regensburg
About the ageing within Lithium-ion battery systems.
Grün. T.; Stella, K.
2017. Proceedings of the 27th International Ocean and Polar Engineering Conference San Francisco, CA, June 25-30, 2017. USB Drive, ISOPE. Mountain View (CA)
Performance Evaluation of Household Li-ion Battery Storage Systems.
Munzke, N.; Schwarz, B.; Barry, J.
2017. Proceedings of the 27th International Ocean and Polar Engineering Conference San Francisco, CA, June 25-30, 2017. USB Drive, ISOPE. Mountain View (CA)
New method for binder and carbon black detection at nanometer scale in carbon electrodes for lithium ion batteries.
Pfaffmann, L.; Jaiser, S.; Müller, M.; Scharfer, P.; Schabel, W.; Bauer, W.; Scheiba, F.; Ehrenberg, H.
2017. Journal of power sources, 363, 460–469. doi:10.1016/j.jpowsour.2017.07.102
LiCaFeF₆ : A zero-strain cathode material for use in Li-ion batteries.
Biasi, L. de; Lieser, G.; Dräger, C.; Indris, S.; Rana, J.; Schumacher, G.; Mönig, R.; Ehrenberg, H.; Binder, J. R.; Geßwein, H.
2017. Journal of power sources, 362, 192–201. doi:10.1016/j.jpowsour.2017.07.007
A novel conversion anode composite for lithium ion batteries based on MnF₂/carbon nanotubes with hierarchical structure.
Zhang, L.; Reddy, M. A.; Lin, X.-M.; Zhao-Karger, Z.; Fichtner, M.
2017. Journal of alloys and compounds, 724, 1101–1108. doi:10.1016/j.jallcom.2017.07.138
A Porphyrin Complex as a Self-Conditioned Electrode Material for High-Performance Energy Storage.
Gao, P.; Chen, Z.; Zhao-Karger, Z.; Mueller, J. E.; Jung, C.; Klyatskaya, S.; Diemant, T.; Fuhr, O.; Jacob, T.; Behm, R. J.; Ruben, M.; Fichtner, M.
2017. Angewandte Chemie / International edition, 56 (35), 10341–10346. doi:10.1002/anie.201702805
The role of ionic liquid in oxygen reduction reaction for lithium-air batteries.
Galiote, N. A.; Jeong, S.; Morais, W. G.; Passerini, S.; Huguenin, F.
2017. Electrochimica acta, 247, 610–616. doi:10.1016/j.electacta.2017.06.137
Metal-semiconductor core-shell nanomaterials for energy applications. A volume in micro and nano technologies.
Nagar, R.; Vinayan, B. P.
2017. Metal Semiconductor Core-shell Nanostructures for Energy and Environmental Applications. Ed.: R. K. Gupta, 99–132, Elsevier, Amsterdam, NL. doi:10.1016/B978-0-323-44922-9.00005-3
CuV2S4: A High Rate Capacity and Stable Anode Material for Sodium Ion Batteries.
Krengel, M.; Hansen, A.-L.; Kaus, M.; Indris, S.; Wolff, N.; Kienle, L.; Westfal, D.; Bensch, W.
2017. ACS applied materials & interfaces, 9 (25), 21282–21291. doi:10.1021/acsami.7b04739
Sodium vanadium titanium phosphate electrode for symmetric sodium-ion batteries with high power and long lifespan.
Wang, D.; Bie, X.; Fu, Q.; Dixon, D.; Bramnik, N.; Hu, Y.-S.; Fauth, F.; Wei, Y.; Ehrenberg, H.; Chen, G.; Du, F.
2017. Nature Communications, 8, Art.Nr.: 15888. doi:10.1038/ncomms15888
Capacity Fade in Solid-State Batteries : Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes.
Koerver, R.; Aygün, I.; Leichtweiß, T.; Dietrich, C.; Zhang, W.; Binder, J. O.; Hartmann, P.; Zeier, W. G.; Janek, J.
2017. Chemistry of materials, 29 (13), 5574–5582. doi:10.1021/acs.chemmater.7b00931
Thermal evolution of polar nanoregions identified by the relaxation time of electric modulus in the BiNaTiO system.
Liu, L.; Ma, X.; Knapp, M.; Ehrenberg, H.; Peng, B.; Fang, L.; Hinterstein, M.
2017. epl, 118 (4), Art. Nr. 47001. doi:10.1209/0295-5075/118/47001
Behavior of Germanium and Silicon Nanowire Anodes with Ionic Liquid Electrolytes.
Kim, G.-T.; Kennedy, T.; Brandon, M.; Geaney, H.; Ryan, K. M.; Passerini, S.; Appetecchi, G. B.
2017. ACS nano, 11 (6), 5933–5943. doi:10.1021/acsnano.7b01705
The Thermal Neutron Beam Option for NECTAR at MLZ.
Mühlbauer, M. J.; Bücherl, T.; Genreith, C.; Knapp, M.; Schulz, M.; Söllradl, S.; Wagner, F. M.; Ehrenberg, H.
2017. Physics procedia, 88, 148–153. doi:10.1016/j.phpro.2017.06.020
Electroless chemical aging of carbon felt electrodes for the all-vanadium redox flow battery (VRFB) investigated by Electrochemical Impedance and X-ray Photoelectron Spectroscopy.
Derr, I.; Przyrembel, D.; Schweer, J.; Fetyan, A.; Langner, J.; Melke, J.; Weinelt, M.; Roth, C.
2017. Electrochimica acta, 246, 783–793. doi:10.1016/j.electacta.2017.06.050
Preventing Li-ion cell explosion during thermal runaway with reduced pressure.
Hofmann, A.; Uhlmann, N.; Ziebert, C.; Wiegand, O.; Schmidt, A.; Hanemann, T.
2017. Applied thermal engineering, 124, 539–544. doi:10.1016/j.applthermaleng.2017.06.056
Relation between the Co-O bond lengths and the spin state of Co in layered Cobaltates: A high-pressure study.
Chin, Y.-Y.; Lin, H.-J.; Hu, Z.; Kuo, C.-Y.; Mikhailova, D.; Lee, J.-M.; Haw, S.-C.; Chen, S.-A.; Schnelle, W.; Ishii, H.; Hiraoka, N.; Liao, Y.-F.; Tsuei, K.-D.; Tanaka, A.; Hao Tjeng, L.; Chen, C.-T.; Chen, J.-M.
2017. Scientific reports, 7 (1), Art. Nr.: 3656. doi:10.1038/s41598-017-03950-z
Structural Investigations on Lithium-Doped Protic and Aprotic Ionic Liquids.
Ray, P.; Vogl, T.; Balducci, A.; Kirchner, B.
2017. The journal of physical chemistry <Washington, DC> / B, 121 (20), 5279–5292. doi:10.1021/acs.jpcb.7b02636
Silicon carboxylate derived silicon oxycarbides as anodes for lithium ion batteries.
Tahir, M.; Weinberger, M.; Balasubramanian, P.; Diemant, T.; Behm, R. J.; Lindén, M.; Wohlfahrt-Mehrens, M.
2017. Journal of materials chemistry / A, 5 (21), 10190–10199. doi:10.1039/C7TA01843F
Electrochemically Driven Omeprazole Metabolism via Cytochrome P450 Assembled on the Nanocomposites of Ceria Nanoparticles and Graphene.
Tian, J.; Wang, J.; Li, Y.; Huang, M.; Lu, J.
2017. Journal of the Electrochemical Society, 164 (7), H470–H476. doi:10.1149/2.0751707jes
Unveiling the Ion Conduction Mechanism in Imidazolium-Based Poly(ionic liquids) : A Comprehensive Investigation of the Structure-to-Transport Interplay.
Delhorbe, V.; Bresser, D.; Mendil-Jakani, H.; Rannou, P.; Bernard, L.; Gutel, T.; Lyonnard, S.; Picard, L.
2017. Macromolecules, 50 (11), 4309–4321. doi:10.1021/acs.macromol.7b00197
Electrochemical Cross-Talk Leading to Gas Evolution and Capacity Fade in LiNi0.5Mn1.5O4/Graphite Full-Cells.
Michalak, B.; Berkes, B. B.; Sommer, H.; Brezesinski, T.; Janek, J.
2017. The journal of physical chemistry <Washington, DC> / C, 121 (1), 211–216. doi:10.1021/acs.jpcc.6b11184
Synthesis, Structural Characterization, and Lithium Ion Conductivity of the Lithium Thiophosphate Li2P2S6.
Dietrich, C.; Weber, D. A.; Culver, S.; Senyshyn, A.; Sedlmaier, S. J.; Indris, S.; Janek, J.; Zeier, W. G.
2017. Inorganic chemistry, 56 (11), 6681–6687. doi:10.1021/acs.inorgchem.7b00751
Modeling nucleation and growth of zinc oxide during discharge of primary zinc-air batteries.
Stamm, J.; Varzi, A.; Latz, A.; Horstmann, B.
2017. Journal of power sources, 360, 136–149. doi:10.1016/j.jpowsour.2017.05.073
Exploring the Ni redox activity in polyanionic compounds as conceivable high potential cathodes for Na rechargeable batteries.
Zhang, H.; Hasa, I.; Buchholz, D.; Qin, B.; Geiger, D.; Jeong, S.; Kaiser, U.; Passerini, S.
2017. NPG Asia Materials, 9, Art. Nr.: e370. doi:10.1038/am.2017.41
Li9Al4Sn5 as a new ordered superstructure of the Li13Sn5 type.
Pavlyuk, V.; Dmytriv, G.; Tarasiuk, I.; Ehrenberg, H.
2017. Acta crystallographica / C, 73 (4), 337–342. doi:10.1107/S205322961700420X
A combined UHV-STM-flow cell set-up for electrochemical/electrocatalytic studies of structurally well-defined UHV prepared model electrodes.
Schnaidt, J.; Beckord, S.; Engstfeld, A. K.; Klein, J.; Brimaud, S.; Behm, R. J.
2017. Physical chemistry, chemical physics, 19 (6), 4166–4178. doi:10.1039/c6cp06051j
Accelerated Degradation of Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers : II. Steady State Liquid Water Distributions with in Operando Synchrotron X-ray Radiography.
Liu, H.; George, M. G.; Banerjee, R.; Ge, N.; Lee, J.; Muirhead, D.; Shrestha, P.; Chevalier, S.; Hinebaugh, J.; Zeis, R.; Messerschmidt, M.; Scholta, J.; Bazylak, A.
2017. Journal of the Electrochemical Society, 164 (7), F704-F713. doi:10.1149/2.0081707jes
Accelerated Degradation of Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers : I. Methodology and Surface Characterization.
Liu, H.; George, M. G.; Messerschmidt, M.; Zeis, R.; Kramer, D.; Scholta, J.; Bazylak, A.
2017. Journal of the Electrochemical Society, 164 (7), F695-F703. doi:10.1149/2.0071707jes
Diffusion of water in silica glass in the absence of stresses.
Wiederhorn, S. M.; Rizzi, G.; Wagner, S.; Hoffmann, M. J.; Fett, T.
2017. Journal of the American Ceramic Society, 100 (9), 3895–3902. doi:10.1111/jace.14937
Identification of residual stress layers at glass surfaces via crack terminating angles.
Schell, K. G.; Wagner, S.; Hettich, P.; Fett, T.; Rizzi, G.; Hoffmann, M. J.
2017. Journal of the American Ceramic Society, 100 (9), 4173–4179. doi:10.1111/jace.14964
Interfacial Processes and Influence of Composite Cathode Microstructure Controlling the Performance of All-Solid-State Lithium Batteries.
Zhang, W.; Weber, D. A.; Weigand, H.; Arlt, T.; Manke, I.; Schröder, D.; Koerver, R.; Leichtweiss, T.; Hartmann, P.; Zeier, W. G.; Janek, J.
2017. ACS applied materials & interfaces, 9 (21), 17835–17845. doi:10.1021/acsami.7b01137
Investigation of nano-sized Cu(II)O as a high capacity conversion material for Li-metal cells and lithium-ion full cells.
Qian, Y.; Niehoff, P.; Zhou, D.; Adam, R.; Mikhailova, D.; Pyschik, M.; Börner, M.; Klöpsch, R.; Rafaja, D.; Schumacher, G.; Ehrenberg, H.; Winter, M.; Schappacher, F.
2017. Journal of materials chemistry / A, 5 (14), 6556–6568. doi:10.1039/C6TA10944F
Ferroelectric domains in methylammonium lead iodide perovskite thin-films.
Röhm, H.; Leonhard, T.; Hoffmann, M. J.; Colsmann, A.
2017. Energy & environmental science, 10 (4), 950–955. doi:10.1039/C7EE00420F
Kinetics and Degradation Processes of CuO as Conversion Electrode for Sodium-Ion Batteries: An Electrochemical Study Combined with Pressure Monitoring and DEMS.
Klein, F.; Pinedo, R.; Berkes, B. B.; Janek, J.; Adelhelm, P.
2017. The journal of physical chemistry <Washington, DC> / C, 121 (16), 8679–8691. doi:10.1021/acs.jpcc.6b11149
Thermal behaviour of LiₓMeO₂ (Me = Co or Ni + Mn + Co) cathode materials.
Gotcu, P.; Pfleging, W.; Smyrek, P.; Seifert, H. J.
2017. Physical chemistry, chemical physics, 19 (19), 11920–11930. doi:10.1039/C7CP00513J
Capturing Irradiation with Nanoantennae : Plasmon-Induced Enhancement of Photoelectrolysis.
Daccache, L.; Zeller, S.; Jacob, T.
2017. ChemPhysChem, 18 (12), 1578–1585. doi:10.1002/cphc.201700249
Pectin, Hemicellulose, or Lignin? Impact of the Biowaste Source on the Performance of Hard Carbons for Sodium-Ion Batteries.
Dou, X.; Hasa, I.; Hekmatfar, M.; Diemant, T.; Behm, R. J.; Buchholz, D.; Passerini, S.
2017. ChemSusChem, 10 (12), 2668–2676. doi:10.1002/cssc.201700628
Chloride Ion Battery Review: Theoretical Calculations, State of the Art, Safety, Toxicity, and an Outlook towards Future Developments.
Gschwind, F.; Euchner, H.; Rodriguez-Garcia, G.
2017. European journal of inorganic chemistry, 2017 (21), 2784–2799. doi:10.1002/ejic.201700288
Nanostructured Na-ion and Li-ion anodes for battery application: A comparative overview.
Hasa, I.; Hassoun, J.; Passerini, S.
2017. Nano research, 10 (12), 3942–3969. doi:10.1007/s12274-017-1513-7
Conductivity Optimization of Tysonite-type La₁₋ₓBaxF₃₋ₓ Solid Electrolytes for Advanced Fluoride Ion Battery.
Bhatia, H.; Thieu, D. T.; Pohl, A. H.; Chakravadhanula, V. S. K.; Fawey, M. H.; Kübel, C.; Fichtner, M.
2017. ACS applied materials & interfaces, 9 (28), 23707–23715. doi:10.1021/acsami.7b04936
A new class of non-corrosive, highly efficient electrolytes for rechargeable magnesium batteries.
Zhao-Karger, Z.; Gil Bardaji, M. E.; Fuhr, O.; Fichtner, M.
2017. Journal of materials chemistry / A, 5 (22), 10815–10820. doi:10.1039/C7TA02237A
Fabrication and characterization of silicon-based 3D electrodes for high-energy lithium-ion batteries.
Zheng, Y.; Smyrek, P.; Rakebrandt, J.-H.; Kübel, C.; Seifert, H. J.; Pfleging, W.
2017. Laser-based Micro- and Nanoprocessing XI, San Francisco, CA, January 31 - February 2. Ed.: U. Klotzbach, Art.Nr.: 100920L, SPIE, Bellingham. doi:10.1117/12.2251374
Laser processing of thick Li(NiMnCo)O2 electrodes for lithium-ion batteries.
Rakebrandt, J.-H.; Smyrek, P.; Zheng, Y.; Seifert, H. J.; Pfleging, W.
2017. Laser Resonators, Microresonators, and Beam Control XIX 2017, San Francisco, United States, 30. - 2. February, 2017, Art.Nr.: 100920M, SPIE. doi:10.1117/12.2252093
Investigation of micro-structured Li(Ni1/3Mn1/3Co1/3)O2 cathodes by laser-induced breakdown spectroscopy.
Smyrek, P.; Zheng, Y.; Rakebrandt, J.-H.; Seifert, H. J.; Pfleging, W.
2017. Laser Resonators, Microresonators, and Beam Control XIX 2017, San Francisco, United States, 30. - 2. February, 2017, Art.Nr.: 100920S, SPIE. doi:10.1117/12.2253894
Laser structured Cu foil for high-performance lithium-ion battery anodes.
Zhang, N.; Zheng, Y.; Trifonova, A.; Pfleging, W.
2017. Journal of applied electrochemistry, 47 (7), 829–837. doi:10.1007/s10800-017-1086-x
Biorefinery Modeling and Optimization.
Sanz, A.; Susmozas, A.; Peters, J.; Dufour, J.
2017. Biorefineries. Ed.: M. Rabaçal, 123–160, Springer International Publishing, Cham. doi:10.1007/978-3-319-48288-0_6
CuF₂ as Reversible Cathode for Fluoride Ion Batteries.
Thieu, D. T.; Fawey, M. H.; Bhatia, H.; Diemant, T.; Chakravadhanula, V. S. K.; Behm, R. J.; Kübel, C.; Fichtner, M.
2017. Advanced functional materials, 27 (31), Art. Nr. 1701051. doi:10.1002/adfm.201701051
Enhanced Capacitive Energy Storage in Polyoxometalate-Doped Polypyrrole.
Herrmann, S.; Aydemir, N.; Nägele, F.; Fantauzzi, D.; Jacob, T.; Travas-Sejdic, J.; Streb, C.
2017. Advanced functional materials, 27 (25), Art. Nr. 1700881. doi:10.1002/adfm.201700881
Standard enthalpy of reaction for the reduction of Co₃O₄ to CoO.
Mayer, N. A.; Cupid, D. M.; Adam, R.; Reif, A.; Rafaja, D.; Seifert, H. J.
2017. Thermochimica acta, 652, 109–118. doi:10.1016/j.tca.2017.03.011
Insights into the reversibility of the aluminum graphite battery.
Elia, G. A.; Hasa, I.; Greco, G.; Diemant, T.; Marquardt, K.; Hoeppner, K.; Behm, R. J.; Hoell, A.; Passerini, S.; Hahn, R.
2017. Journal of materials chemistry / A, 5 (20), 9682–9690. doi:10.1039/C7TA01018D
The impact of mixtures of protic ionic liquids on the operative temperature range of use of battery systems.
Vogla, T.; Passerinia, S.; Balduccia, A.
2017. Electrochemistry communications, 78, 47–50. doi:10.1016/j.elecom.2017.04.002
Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P(EO)15LiTFSI.
Keller, M.; Appetecchi, G. B.; Kim, G.-T.; Sharova, V.; Schneider, M.; Schuhmacher, J.; Roters, A.; Passerini, S.
2017. Journal of power sources, 353, 287–297. doi:10.1016/j.jpowsour.2017.04.014
Interplay between structure and properties in acid-base blend PBI-based membranes for HT-PEM fuel cells.
Giffin, G. A.; Galbiati, S.; Walter, M.; Aniol, K.; Ellwein, C.; Kerres, J.; Zeis, R.
2017. Journal of membrane science, 535, 122–131. doi:10.1016/j.memsci.2017.04.019
LaSrMnO₄: Reversible electrochemical intercalation of fluoride ions in the context of fluoride ion batteries.
Nowroozi, M. A.; Wissel, K.; Rohrer, J.; Reddy Munnangi, A.; Clemens, O.
2017. Chemistry of materials, 29 (8), 3441–3453. doi:10.1021/acs.chemmater.6b05075
NASICON-Type Mg0.5Ti₂(PO₄)₃ Negative Electrode Material Exhibits Different Electrochemical Energy Storage Mechanisms in Na-Ion and Li-Ion Batteries.
Zhao, Y.; Wei, Z.; Pang, Q.; Wei, Y.; Cai, Y.; Fu, Q.; Du, F.; Sarapulova, A.; Ehrenberg, H.; Liu, B.; Chen, G.
2017. ACS applied materials & interfaces, 9 (5), 4709–4718. doi:10.1021/acsami.6b14196
Excellent Cycling Stability and Superior Rate Capability of Na₃V₂(PO₄)₃ Cathodes Enabled by Nitrogen-Doped Carbon Interpenetration for Sodium-Ion Batteries.
Zhang, H.; Hasa, I.; Qin, B.; Diemant, T.; Buchholz, D.; Behm, R. J.; Passerini, S.
2017. ChemElectroChem, 4 (5), 1256–1263. doi:10.1002/celc.201700053
Physicochemical and electrochemical investigations of the ionic liquid N-butyl -N-methyl-pyrrolidinium 4,5-dicyano-2-(trifluoromethyl)imidazole.
Ochel, A.; Di Lecce, D.; Wolff, C.; Kim, G.-T.; Carvalho, D. V.; Passerini, S.
2017. Electrochimica acta, 232, 586–595. doi:10.1016/j.electacta.2017.02.141
A transient multi-scale model for direct methanol fuel cells.
Jahnke, T.; Zago, M.; Casalegno, A.; Bessler, W. G.; Latz, A.
2017. Electrochimica acta, 232, 215–225. doi:10.1016/j.electacta.2017.02.116
Anisotropic Lattice Strain and Mechanical Degradation of High- and Low-Nickel NCM Cathode Materials for Li-Ion Batteries.
Kondrakov, A. O.; Schmidt, A.; Xu, J.; Geßwein, H.; Mönig, R.; Hartmann, P.; Sommer, H.; Brezesinski, T.; Janek, J.
2017. The journal of physical chemistry <Washington, DC> / C, 121 (6), 3286–3294. doi:10.1021/acs.jpcc.6b12885
Investigation of the wetting behavior of Na and Na alloys on uncoated and coated Na-β”-alumina at temperatures below 150 °C.
Ahlbrecht, K.; Bucharsky, C.; Holzapfel, M.; Tübke, J.; Hoffmann, M. J.
2017. Ionics, 23 (5), 1319–1327. doi:10.1007/s11581-017-2017-x
Unravelling the growth mechanism of hierarchically structured Ni1/3Co1/3Mn1/3(OH)2 and their application as precursors for high-power cathode materials.
Hua, W.; Liu, W.; Chen, M.; Indris, S.; Zheng, Z.; Guo, X.; Bruns, M.; Wu, T.-H.; Chen, Y.; Zhong, B.; Chou, S.; Kang, Y.-M.; Ehrenberg, H.
2017. Electrochimica acta, 232, 123–131. doi:10.1016/j.electacta.2017.02.105
Effect of fatigue/ageing on the lithium distribution in cylinder-type Li-ion batteries.
Mühlbauer, M. J.; Dolotko, O.; Hofmann, M.; Ehrenberg, H.; Senyshyn, A.
2017. Journal of power sources, 348, 145–149. doi:10.1016/j.jpowsour.2017.02.077
Physical-Chemical Characterization of Binary Mixtures of 1-Butyl-1-methylpyrrolidinium Bis{(trifluoromethyl)sulfonyl}imide and Aliphatic Nitrile Solvents as Potential Electrolytes for Electrochemical Energy Storage Applications.
Neale, A. R.; Schütter, C.; Wilde, P.; Goodrich, P.; Hardacre, C.; Passerini, S.; Balducci, A.; Jacquemin, J.
2017. Journal of chemical & engineering data, 62 (1), 376–390. doi:10.1021/acs.jced.6b00718
Li₄PS₄I: A Li⁺ Superionic Conductor Synthesized by a Solvent-Based Soft Chemistry Approach.
Sedlmaier, S. J.; Indris, S.; Dietrich, C.; Yavuz, M.; Dräger, C.; Seggern, F. von; Sommer, H.; Janek, J.
2017. Chemistry of materials, 29 (4), 1830–1835. doi:10.1021/acs.chemmater.7b00013
The use of femtosecond laser ablation as a novel tool for rapid micro-mechanical sample preparation.
Pfeifenberger, M. J.; Mangang, M.; Wurster, S.; Reiser, J.; Hohenwarter, A.; Pfleging, W.; Kiener, D.; Pippan, R.
2017. Materials and design, 121, 109–118. doi:10.1016/j.matdes.2017.02.012
Influence of synthesis, dopants and cycling conditions on the cycling stability of doped LiNi0.5Mn1.5O4 spinels.
Höweling, A.; Stoll, A.; Schmidt, D. O.; Geßwein, H.; Simon, U.; Binder, J. R.
2017. Journal of the Electrochemical Society, 164 (1), A6349-A6358. doi:10.1149/2.0521701jes
Quantum mechanically guided design of amorphous Si–Al–M (M = 3d metals) anodes for Li ion batteries.
Chang, K.; Music, D.; Strafela, M.; Ulrich, S.; Schneider, J. M.
2017. Solid state ionics, 303, 47–51. doi:10.1016/j.ssi.2017.02.011
Is the Solid Electrolyte Interphase an Extra-Charge Reservoir in Li-Ion Batteries?.
Rezvani, S. J.; Gunnella, R.; Witkowska, A.; Mueller, F.; Pasqualini, M.; Nobili, F.; Passerini, S.; Cicco, A. D.
2017. ACS applied materials & interfaces, 9 (5), 4570–4576. doi:10.1021/acsami.6b12408
Flux Synthesis, Crystal Structures, and Magnetic Ordering of the Rare-Earth Chromium(II) Oxyselenides RE₂CrSe₂O₂ (RE = La-Nd).
Peschke, S.; Weippert, V.; Senyshyn, A.; Mühlbauer, M. J.; Janka, O.; Pöttgen, R.; Holenstein, S.; Luetkens, H.; Johrendt, D.
2017. Inorganic chemistry, 56 (4), 2241–2247. doi:10.1021/acs.inorgchem.6b02895
Ionic Liquid Electrolytes for Safer Lithium Batteries – I. Investigation around Optimal Formulation.
Moreno, M.; Simonetti, E.; Appetecchi, G. B.; Carewska, M.; Montanino, M.; Kim, G.-T.; Loeffler, N.; Passerini, S.
2017. Journal of the Electrochemical Society, 164 (1), A6026–A6031. doi:10.1149/2.0051701jes
Characterization of Different Conductive Salts in ACN-Based Electrolytes for Electrochemical Double-Layer Capacitors.
Krummacher, J.; Schütter, C.; Passerini, S.; Balducci, A.
2017. ChemElectroChem, 4 (2), 353–361. doi:10.1002/celc.201600534
Growth of Stable Surface Oxides on Pt(111) at Near-Ambient Pressures.
Fantauzzi, D.; Krick Calderón, S.; Mueller, J. E.; Grabau, M.; Papp, C.; Steinrück, H.-P.; Senftle, T. P.; van Duin, A. C. T.; Jacob, T.
2017. Angewandte Chemie / International edition, 56 (10), 2594–2598. doi:10.1002/anie.201609317
Interlayer-Expanded Vanadium Oxychloride as an Electrode Material for Magnesium-Based Batteries.
Minella, C. B.; Gao, P.; Zhao-Karger, Z.; Mu, X.; Diemant, T.; Pfeifer, M.; Chakravadhanula, V. S. K.; Behm, R. J.; Fichtner, M.
2017. ChemElectroChem, 4 (3), 738–745. doi:10.1002/celc.201700034
Distribution of Relaxation Times Analysis of High-Temperature PEM Fuel Cell Impedance Spectra.
Weiß, A.; Schindler, S.; Galbiati, S.; Danzer, M. A.; Zeis, R.
2017. Electrochimica acta, 230, 391–398. doi:10.1016/j.electacta.2017.02.011
Graphene/V₂O₅ Cryogel Composite As a High-Energy Cathode Material For Lithium-Ion Batteries.
Maroni, F.; Birrozzi, A.; Carbonari, G.; Croce, F.; Tossici, R.; Passerini, S.; Nobili, F.
2017. ChemElectroChem, 4 (3), 613–619. doi:10.1002/celc.201600798
The Li-Sb phase diagram part II: Calorimetry and thermodynamic assessment.
Li, D.; Beutl, A.; Flandorfer, H.; Cupid, D. M.
2017. Journal of alloys and compounds, 701, 186–199. doi:10.1016/j.jallcom.2016.12.399
Aging behavior of lithium iron phosphate based 18650-type cells studied by in situ neutron diffraction.
Paul, N.; Wandt, J.; Seidlmayer, S.; Schebesta, S.; Mühlbauer, M. J.; Dolotko, O.; Gasteiger, H. A.; Gilles, R.
2017. Journal of power sources, 345, 85–96. doi:10.1016/j.jpowsour.2017.01.134
Fast Na⁺ ion conduction in NASICON-type Na3.4Sc₂(SiO₄)0.4(PO₄)2.6 observed by ²³Na NMR relaxometry.
Kaus, M.; Guin, M.; Yavuz, M.; Knapp, M.; Tietz, F.; Guillon, O.; Ehrenberg, H.; Indris, S.
2017. The journal of physical chemistry <Washington, DC> / C, 121 (3), 1449–1454. doi:10.1021/acs.jpcc.6b10523
Graphite//LiNi0.5Mn1.5O₄ Cells Based on Environmentally Friendly Made-in-Water Electrodes.
De Giorgio, F.; Laszczynski, N.; Zamory, J. von; Mastragostino, M.; Arbizzani, C.; Passerini, S.
2017. ChemSusChem, 10 (2), 379–386. doi:10.1002/cssc.201601249
Double layer electrical conductivity as a stability criterion for concentrated colloidal suspensions.
Cruz, R. C. D.; Segadães, A. M.; Oberacker, R.; Hoffmann, M. J.
2017. Colloids and surfaces / A, 520, 9–16. doi:10.1016/j.colsurfa.2017.01.059
Experimental investigation into battery electrode surfaces: The distribution of liquid at the surface and the emptying of pores during drying.
Jaiser, S.; Funk, L.; Baunach, M.; Scharfer, P.; Schabel, W.
2017. Journal of colloid and interface science, 494, 22–31. doi:10.1016/j.jcis.2017.01.063
The Li-Sb phase diagram part I: New experimental results.
Beutl, A.; Cupid, D.; Flandorfer, H.
2017. Journal of alloys and compounds, 695, 1052–1060. doi:10.1016/j.jallcom.2016.10.230
Charging strategies for economic operations of electric vehicles in commercial applications.
Schücking, M.; Jochem, P.; Fichtner, W.; Wollersheim, O.; Stella, K.
2017. Transportation research / D, 51, 173–189. doi:10.1016/j.trd.2016.11.032
Composition-dependent charge transfer and phase separation in the V₁₋ₓReₓO₂ solid solution.
Mikhailova, D.; Kuratieva, N. N.; Utsumi, Y.; Tsirlin, A. A.; Abakumov, A. M.; Schmidt, M.; Oswald, S.; Fuess, H.; Ehrenberg, H.
2017. Dalton transactions, 46 (5), 1606–1617. doi:10.1039/C6DT04389E
Charge Transfer and Structural Anomaly in Stoichiometric Layered Perovskite SrCoIrO .
Mikhailova, D.; Hu, Z.; Kuo, C.-Y.; Oswald, S.; Mogare, K. M.; Agrestini, S.; Lee, J.-F.; Pao, C.-W.; Chen, S.-A.; Lee, J.-M.; Haw, S.-C.; Chen, J.-M.; Liao, Y.-F.; Ishii, H.; Tsuei, K.-D.; Senyshyn, A.; Ehrenberg, H.
2017. European journal of inorganic chemistry, 2017 (3), 587–595. doi:10.1002/ejic.201600970
Parametric stochastic 3D model for the microstructure of anodes in lithium-ion power cells.
Westhoff, D.; Feinauer, J.; Kuchler, K.; Mitsch, T.; Manke, I.; Hein, S.; Latz, A.; Schmidt, V.
2017. Computational materials science, 126, 453–467. doi:10.1016/j.commatsci.2016.09.006
Cyano Ester as Solvent for High Voltage Electrochemical Double Layer Capacitors.
Schütter, C.; Passerini, S.; Korth, M.; Balducci, A.
2017. Electrochimica acta, 224, 278–284. doi:10.1016/j.electacta.2016.12.063
Novel Ternary Polymer Electrolytes Based on Poly(lactic acid) from Sustainable Sources.
Osada, I.; Hosseini, S. M.; Jeong, S.; Passerini, S.
2017. ChemElectroChem, 4 (3), 463–467. doi:10.1002/celc.201600653
Decoupling effective Li+ ion conductivity from electrolyte viscosity for improved room-temperature cell performance.
Giffin, G. A.; Moretti, A.; Jeong, S.; Passerini, S.
2017. Journal of power sources, 342, 335–341. doi:10.1016/j.jpowsour.2016.12.071
Carbon Composites for a High-Energy Lithium-Sulfur Battey with a Glyme-Based Electrolyte.
Carbone, L.; Peng, J.; Agostini, M.; Gobet, M.; Devany, M.; Scrosati, B.; Greenbaum, S.; Hassoun, J.
2017. ChemElectroChem, 4 (1), 209–215. doi:10.1002/celc.201600586
Multi-phase formation induced by kinetic limitations in graphite-based lithium-ion cells: Analyzing the effects on dilation and voltage response.
Bauer, M.; Rieger, B.; Schindler, S.; Keil, P.; Wachtler, M.; Danzer, M. A.; Jossen, A.
2017. Journal of energy storage, 10, 1–10. doi:10.1016/j.est.2016.11.006
Lithium Deposition from a Piperidinium-based Ionic Liquid: Rapping Dendrites on the Knuckles.
Berger, C. A.; Ceblin, M. U.; Jacob, T.
2017. ChemElectroChem, 4 (2), 261–265. doi:10.1002/celc.201600730
A long cycle-life and high safety Na+/Mg2+ hybrid-ion battery built by using a TiS2 derived titanium sulfide cathode.
Bian, X.; Gao, Y.; Fu, Q.; Indris, S.; Ju, Y.; Meng, Y.; Du, F.; Bramnik, N.; Ehrenberg, H.; Wei, Y.
2017. Journal of materials chemistry / A, 5 (2), 600–608. doi:10.1039/C6TA08505A
Kinetic characteristics up to 4.8V of layered LiNi1/3Co1/3Mn1/3O2 cathode materials for high voltage lithium-ion batteries.
Zhang, X.; Chen, Z.; Schwarz, B.; Sigel, F.; Ehrenberg, H.; An, K.; Zhang, Z.; Zhang, Q.; Li, Y.; Li, J.
2017. Electrochimica acta, 227, 152–161. doi:10.1016/j.electacta.2017.01.014
How much does size really matter? Exploring the limits of graphene as Li ion battery anode material.
Sun, H.; Varzi, A.; Pellegrini, V.; Dinh, D. A.; Raccichini, R.; Del Rio-Castillo, A. E.; Prato, M.; Colombo, M.; Cingolani, R.; Scrosati, B.; Passerini, S.; Bonaccorso, F.
2017. Solid state communications, 251, 88–93. doi:10.1016/j.ssc.2016.12.016
Study of all solid-state rechargeable fluoride ion batteries based on thin-film electrolyte.
Zhang, L.; Reddy, M. A.; Gao, P.; Diemant, T.; Behm, J. R.; Fichtner, M.
2017. Journal of solid state electrochemistry, 21 (5), 1243–1251. doi:10.1007/s10008-016-3479-x
Structure and electrochemical performance of cobalt oxide layer coated on LiNi0.03Mn1.97O4 cathode materials.
Wang, Q.; Zhang, Y.; Zhang, H.; Xu, Y.; Dong, H.; Zhao, C.
2017. Journal of alloys and compounds, 693, 474–481. doi:10.1016/j.jallcom.2016.09.130
Iron-Doped ZnO for Lithium-Ion Anodes: Impact of the Dopant Ratio and Carbon Coating Content.
Mueller, F.; Gutsche, A.; Nirschl, H.; Geiger, D.; Kaiser, U.; Bresser, D.; Passerini, S.
2017. Journal of the Electrochemical Society, 164 (1), A6123–A6130. doi:10.1149/2.0171701jes
Electrochemical-thermal characterization and thermal modeling for batteries.
Ziebert, C.; Melcher, A.; Lei, B.; Zhao, W.; Rohde, M.; Seifert, H. J.
2017. Emerging Nanotechnologies in Rechargeable Energy Storage Systems. Ed.: L. Rodriguez-Martinez, 195–229, Elsevier, New York (NY). doi:10.1016/B978-0-323-42977-1.00006-6
Garnet-type Li₇La₃Zr₂O₁₂ solid electrolyte thin films grown by Co₂-laser assisted CVD for all-solid-state batteries.
Loho, C.; Djenadic, R.; Bruns, M.; Clemens, O.; Hahn, H.
2017. Journal of the Electrochemical Society, 164 (1), A6131-A6139. doi:10.1149/2.0201701jes
Ab initio molecular dynamics study of lithium diffusion in tetragonal Li₇La₃Zr₂O₁₂.
Andriyevsky, B.; Doll, K.; Jacob, T.
2017. Materials chemistry and physics, 185, 210–217. doi:10.1016/j.matchemphys.2016.10.025
Investigation of binder distribution in graphite anodes for lithium-ion batteries.
Müller, M.; Pfaffmann, L.; Jaiser, S.; Baunach, M.; Trouillet, V.; Scheiba, F.; Scharfer, P.; Schabel, W.; Bauer, W.
2017. Journal of power sources, 340, 1–5. doi:10.1016/j.jpowsour.2016.11.051
The environmental impact of Li-Ion batteries and the role of key parameters – A review.
Peters, J. F.; Baumann, M.; Zimmermann, B.; Braun, J.; Weil, M.
2017. Renewable & sustainable energy reviews, 67, 491–506. doi:10.1016/j.rser.2016.08.039
2016
Static characterization of discrete state-of-the-art sic power transistors : Real-life properties of SiC devices unveiled.
Meißer, M.; Demattio, H.; Blank, T.
2016. PCIM Europe 2016 : International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management 2016, Nürnberg, Germany, 10th - 12th May 2016, 1487–1493, VDE Verlag, Berlin
A solid future for battery development.
Janek, J.; Zeier, W. G.
2016. Nature energy, 1 (9), Art. Nr. 16141. doi:10.1038/nenergy.2016.141
Sensorik zur Detektion einer Beschichtungskante in der Lithium-Ionen-Zellfertigung.
Baumeister, M.; Fleischer, J.; Grether, G.
2016. Zeitschrift für wirtschaftlichen Fabrikbetrieb, 111 (1-2), 32–35. doi:10.3139/104.111455
Low-temperature silver sintering processes on high performance ENIG, EPIG, ENEPIG and ISIG surfaces for power electronic systems and huge battery systems.
Blank, T.; Scherer, T.; Bruns, M.; Meisser, M.; An, B.; Leyrer, B.; Weber, M.
2016. 6th Electronic System-Integration Technology Conference (ESTC), Grenoble, France, 13–15 September 2016, 1–6, IEEE, Piscataway (NJ). doi:10.1109/ESTC.2016.7764680
Ionic conductivity and stability of the lithium aluminum germanium phosphate.
Cui, Y.; Rohde, M.; Reichmann, T.; Mahmoud, M.; Ziebert, C.; Seifert, H. J.
2016. 229th ECS Meeting : Joint General Session : Batteries and Energy Storage -and- Fuel Cells, Electrolytes, and Energy Conversion. San Diego, CA, May 29 -June 2, 2016, 139–146, ECS, Pennington, NJ. doi:10.1149/07208.0139ecst
Simple One-Pot Syntheses and Characterizations of Free Fluoride- and Bifluoride-Containing Polymers Soluble in Non-Aqueous Solvents.
Steinle, D.; Friedrich, L.; Bevilacqua, N.; Hauff, E. von; Gschwind, F.
2016. Materials, 9 (12), 965. doi:10.3390/ma9120965
Average vs. local structure and composition-property phase diagram of K0.5Na0.5NbO3-Bi1/2Na1/2TiO3 system.
Liu, L.; Knapp, M.; Ehrenberg, H.; Fang, L.; Fan, H.; Schmitt, L. A.; Fuess, H.; Hoelzel, M.; Dammak, H.; Thi, M. P.; Hinterstein, M.
2016. Journal of the European Ceramic Society, 37 (4), 1387–1399. doi:10.1016/j.jeurceramsoc.2016.11.024
Influence of the secondary phase LiTiOPO₄ on the properties of Li₁+ₓAlₓTi₂-x(PO₄)₃ (x=0; 0.3).
Hupfer, T.; Bucharsky, E. C.; Schell, K. G.; Hoffmann, M. J.
2016. Solid State Ionics, 302, 49–53. doi:10.1016/j.ssi.2016.10.008
Der Verfestigungsmechanismus von Lithium-Ionen-Batterieelektroden während der Trocknung.
Jaiser, S.; Müller, M.; Bauer, W.; Bhattacharjee, A.; Scharfer, P.; Schabel, W.
2016. Chemie - Ingenieur - Technik, 88 (9), 1269. doi:10.1002/cite.201650435
VOCl as a Cathode for Rechargeable Chloride Ion Batteries.
Gao, P.; Reddy, M. A.; Mu, X.; Diemant, T.; Zhang, L.; Zhao-Karger, Z.; Chakravadhanula, V. S. K.; Clemens, O.; Behm, R. J.; Fichtner, M.
2016. Angewandte Chemie, 128 (13), 4357–4362. doi:10.1002/ange.201509564
Microporous carbonaceous materials prepared from biowaste for supercapacitor application.
Ramirez-Castro, C.; Schuetter, C.; Passerini, S.; Balducci, A.
2016. Electrochimica acta, 206, 452–457. doi:10.1016/j.electacta.2015.12.126
Kinetic passivation effect of localized differential aeration on brass.
Kuznetsov, V.; Estrada-Vargas, A.; Maljusch, A.; Berkes, B. B.; Bandarenka, A. S.; Souto, R. M.; Schuhmann, W.
2016. ChemPlusChem, 81 (1), 49–57. doi:10.1002/cplu.201500398
Li/air Flow Battery Employing Ionic Liquid Electrolytes.
Grande, L.; Ochel, A.; Monaco, S.; Mastragostino, M.; Tonti, D.; Palomino, P.; Paillard, E.; Passerini, S.
2016. Energy technology, 39 (3), 393. doi:10.1002/ente.201500247
Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.
Osada, I.; de Vries, H.; Scrosati, B.; Passerini, S.
2016. Angewandte Chemie / International edition, 55 (2), 500–513. doi:10.1002/anie.201504971
Coordination of the Mn⁴⁺-Center in Layered Li[CoMn]O₂ Cathode Materials for Lithium-Ion Batteries.
Jakes, P.; Kröll, L.; Ozarowski, A.; Tol, J. van; Mikhailova, D.; Ehrenberg, H.; Eichel, R.-A.
2016. Zeitschrift für Physikalische Chemie, 231 (4), 905–922. doi:10.1515/zpch-2016-0909
Changes of the balancing between anode and cathode due to fatigue in commercial lithium-ion cells.
Kleiner, K.; Jakes, P.; Scharner, S.; Liebau, V.; Ehrenberg, H.
2016. Journal of power sources, 317, 25–34. doi:10.1016/j.jpowsour.2016.03.049
Delithiated LiCoNi0.1MnO cathode materials for lithium-ion batteries: Structural, magnetic and electrochemical studies.
Labrini, M.; Scheiba, F.; Almaggoussi, A.; Larzek, M.; Braga, M. H.; Ehrenberg, H.; Saadoune, I.
2016. Solid state ionics, 289, 207–213. doi:10.1016/j.ssi.2016.03.017
Performance and profitability of battery storage systems for mitigating solar power fluctuations.
Barry, J.; Munzke, N.
2016. 4th Southern African Solar Energy Conference (SASEC 2016), Stellenbosch, ZA, October 31 - November 2, 2016. Proceedings
Kontinuierliches Stapelverfahren für Li-Ion-Zellen.
Haag, S.; Fleischer, J.
2016. wt Werkstattstechnik online, 106 (7/8), 559–562
Sensorik zur Detektion einer Beschichtungskante in der Lithium-Ionen-Zellfertigung.
Baumeister, M.; Fleischer, J.; Grether, G.
2016. Zeitschrift für wirtschaftlichen Fabrikbetrieb, 111 (1-2), 32–35
Low-temperature silver sintering processes on high performance ENIG, EPIG, ENEPIG and ISIG surfaces for power electronic systems and huge battery systems.
Blank, T.; Scherer, T.; Bruns, M.; Meisser, M.; An, B.; Leyrer, B.; Weber, M.
2016. Proceedings of the 6th Electronics System-Integration Technology Conference (ESTC 2016), Grenoble, F, September 13-16, 2016, IEEE, Piscataway (NJ)
Co SOLUBILITY IN BINARY COMPOUND TiMn2 AT 1 070 K.
Hmel, N.; Dmytriv, G.; Knapp, M.; Ehrenberg, H.
2016. Bulletin der Universität Lemberg / Reihe Chemie, 57 (Teil 1), 63–69
Comprehensive analysis of TEM methods for LiFePO4/FePO4 phase mapping: spectroscopic techniques (EFTEM, STEM-EELS) and STEM diffraction techniques (ACOM-TEM).
Mu, X.; Kobler, A.; Wang, D.; Chakravadhanula, V. S. K.; Schlabach, S.; Szabo, D. V.; Norby, P.; Kübel, C.
2016. Ultramicroscopy. doi:10.1016/j.ultramic.2016.07.009
Laser-Induced Breakdown Spectroscopy as a Powerful Tool for Characterization of Laser Modified Composite Materials.
Smyrek, P.; Zheng, Y.; Seifert, H. J.; Pfleging, W.
2016. 6th International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale, (3M-NANO) 18-22 July 2016, Chongqing, China, 164–167, IEEE, Piscataway (NY). doi:10.1109/3M-NANO.2016.7824954
Laser Interference Patterning and Laser-induced Periodic Surface Structure Formation on Metallic Substrates.
Zheng, Y.; Smyrek, P.; Seifert, H. J.; Kunze, T.; Lang, V.; Pfleging, W.
2016. 6th International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale, (3M-NANO) Chongqing, China, 18-22 July 2016, 159–163, IEEE, Piscataway (NJ). doi:10.1109/3M-NANO.2016.7824955
Laser processes and analytics for high power 3D battery materials.
Pfleging, W.; Mangang, M.; Bruns, M.; Zheng, Y.; Smyrek, P.
2016. Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XVI. Ed.: A. Heisterkamp, 974013, SPIE, Bellingham (Wash.). doi:10.1117/12.2212041
Laser Processing - Production of Lithium-Ion Batteries.
Pfleging, W.; Mangang, M.; Zheng, Y.; Smyrek, P.; Pröll, J.
2016. LIA today, 24 (2), 12–15
Laser structuring for improved battery performance.
Pfleging, W.; Mangang, M.; Zheng, Y.; Smyrek, P.
2016. SPIE newsroom. doi:10.1117/2.1201602.006342
Industrial applications of ultrafast laser processing.
Mottay, E.; Liu, X.; Zhang, H.; Mazur, E.; Sanatinia, R.; Pfleging, W.
2016. MRS bulletin, 41 (12), 984–992. doi:10.1557/mrs.2016.275
Electrochemical performance of a superporous activated carbon in ionic liquid-based electrolytes.
Leyva-García, S.; Lozano-Castelló, D.; Morallón, E.; Vogl, T.; Schütter, C.; Passerini, S.; Balducci, A.; Cazorla-Amorós, D.
2016. Journal of power sources, 336, 419–426. doi:10.1016/j.jpowsour.2016.11.010
Thermal and ionic conductivity studies of lithium aluminum germanium phosphate solid-state electrolyte.
Cui, Y.; Mahmoud, M. M.; Rohde, M.; Ziebert, C.; Seifert, H. J.
2016. Solid state ionics, 289, 125–132. doi:10.1016/j.ssi.2016.03.007
Characterization of gas diffusion electrodes for metal-air batteries.
Danner, T.; Eswara, S.; Schulz, V. P.; Latz, A.
2016. Journal of power sources, 324, 646–656. doi:10.1016/j.jpowsour.2016.05.108
Leveraging valuable synergies by combining alloying and conversion for lithium-ion anodes.
Bresser, D.; Passerini, S.; Scrosati, B.
2016. Energy & environmental science, 9 (11), 3348–3367. doi:10.1039/C6EE02346K
Parametrierung von Lithium-Ionen-Zellen auf Basis von CIT-Messungen.
Gulbins, M.; Melcher, A.; Ziebert, C.; Lei, B.; Markwirth, T.; Haase, J.
2016. ASIM-Treffen STS/GMMS : Workshop der ASIM/GI Fachgruppen STS und GMMS, Lippstadt, 10.-11. März 2016. Hrsg.: D. Tikhomirov, 37–44, ARGESIM, Vienna
Modellierung und Simulation des thermischen Runaways in zylindrischen Li-Ionen Batterien.
Melcher, A.; Ziebert, C.; Lei, B.; Zhao, W.; Rohde, M.; Seifert, H. J.
2016. D. Tikhomiriv, H.-Th. Mammen, Th. Pawletta, Hrsg. ARGESIM Report 51, ASIM Mitteilung AM 158, 8–28, ARGESIM Verlag Wien
Dysprosium electrodeposition from a hexaalkylguanidinium-based ionic liquid.
Berger, C. A.; Arkhipova, M.; Maas, G.; Jacob, T.
2016. Nanoscale, 8 (29), 13997–14003. doi:10.1039/C6NR01351A
Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries.
Varzi, A.; Raccichini, R.; Passerini, S.; Scrosati, B.
2016. Journal of materials chemistry / A, 4 (44), 17251–17259. doi:10.1039/c6ta07384k
Effect of coatings on the green electrode processing and cycling behaviour of LiCoPO₄.
Laszczynski, N.; Birrozzi, A.; Maranski, K.; Copley, M.; Schuster, M. E.; Passerini, S.
2016. Journal of materials chemistry, 4 (43), 17121–17128. doi:10.1039/c6ta05262b
Investigation of diffusion behavior in Cu-Sn solid state diffusion couples.
Yuan, Y.; Guan, Y.; Li, D.; Moelans, N.
2016. Journal of alloys and compounds, 661, 282–293. doi:10.1016/j.jallcom.2015.11.214
Lithium Diffusion Pathway in Li1.3Al0.3Ti1.7(PO4)3 (LATP) Superionic Conductor.
Monchak, M.; Hupfer, T.; Senyshyn, A.; Boysen, H.; Chernyshov, D.; Hansen, T.; Schell, K. G.; Bucharsky, E. C.; Hoffmann, M. J.; Ehrenberg, H.
2016. Inorganic chemistry, 55 (6), 2941–2945. doi:10.1021/acs.inorgchem.5b02821
Urchin-like α-MnO₂ formed by nanoneedles for high-performance lithium batteries.
Hashem, A. M.; Abdel-Ghany, A. E.; El-Tawil, R.; Bhaskar, A.; Hunzinger, B.; Ehrenberg, H.; Mauger, A.; Julien, C. M.
2016. Ionics, 22 (12), 2263–2271. doi:10.1007/s11581-016-1771-5
Reconfiguration of lithium sulphur batteries: "Enhancement of Li-S cell performance by employing a highly porous conductive separator coating".
Stoeck, U.; Balach, J.; Klose, M.; Wadewitz, D.; Ahrens, E.; Eckert, J.; Giebeler, L.
2016. Journal of power sources, 309, 76–81. doi:10.1016/j.jpowsour.2015.11.077
Re-investigation of the Cd-Ce Phase Diagram and Structural Characterization of the High-Temperature Phase Cd17+2xCe2−x (x ~ 0.02).
Skoyszewska-Kühberger, B.; Reichmann, T. L.; Marker, M. C. J.; Effenberger, H. S.; Ipser, H.
2016. Journal of phase equilibria and diffusion, 37 (2), 186–200. doi:10.1007/s11669-015-0441-z
Polystyrene comb architectures as model systems for the optimized solution electrospinning of branched polymers.
Riazi, K.; Kübel, J.; Abbasi, M.; Bachtin, K.; Indris, S.; Ehrenberg, H.; Kádár, R.; Wilhelm, M.
2016. Polymer, 104, 240–250. doi:10.1016/j.polymer.2016.05.032
A systematic study of thick electrodes for high energy lithium ion batteries.
Singh, M.; Kaiser, J.; Hahn, H.
2016. Journal of electroanalytical chemistry, 782, 245–249. doi:10.1016/j.jelechem.2016.10.040
A large format in operando wound cell for analysing the structural dynamics of lithium insertion materials.
Brant, W. R.; Roberts, M.; Gustafsson, T.; Biendicho, J. J.; Hull, S.; Ehrenberg, H.; Edström, K.; Schmid, S.
2016. Journal of power sources, 336, 279–285. doi:10.1016/j.jpowsour.2016.10.071
Facile Preparation of Chloride-Conducting Membranes: First Step towards a Room-Temperature Solid-State Chloride-Ion Battery.
Gschwind, F.; Steinle, D.; Sandbeck, D.; Schmidt, C.; Hauff, von E.
2016. ChemistryOpen, 5 (6), 525–530. doi:10.1002/open.201600109
Local structural investigations, defect formation and ionic conductivity of the lithium ionic conductor LiPS.
Dietrich, C.; Sadowski, M.; Sicolo, S.; Weber, D. A.; Sedlmaier, S. J.; Weidert, K. S.; Indirs, S.; Albe, K.; Janek, J.; Zeier, W. G.
2016. Chemistry of materials, 28 (23), 8764–8773. doi:10.1021/acs.chemmater.6b04175
The use of binary mixtures of 1-butyl-1-methylpyrrolidinium bis{(trifluoromethyl)sulfonyl}imide and aliphatic nitrile solvents as electrolyte for supercapacitors.
Schütter, C.; Neale, A. R.; Wilde, P.; Goodrich, P.; Hardacre, C.; Passerini, S.; Jacquemin, J.; Balduccia, A.
2016. Electrochimica acta, 220, 146–155. doi:10.1016/j.electacta.2016.10.088
Accelerated Degradation of Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers: Mass Transport Resistance and Liquid Water Accumulation at Limiting Current Density with in operando Synchrotron X-ray Radiography.
George, M. G.; Liu, H.; Banerjee, R.; Ge, N.; Shrestha, P.; Muirhead, D.; Lee, J.; Chevalier, S.; Hinebaugh, J.; Messerschmidt, M.; Zeis, R.; Scholta, J.; Bazylak, A.
2016. ECS transactions, 75 (14), 89–100. doi:10.1149/07514.0089ecst
The Role of Reduced Graphite Oxide in Transition Metal Oxide Nanocomposites Used as Li Anode Material: An Operando Study on CoFe₂O₄/rGO.
Permien, S.; Indris, S.; Neubüser, G.; Fiedler, A.; Kienle, L.; Zander, S.; Doyle, S.; Richter, B.; Bensch, W.
2016. Chemistry - a European journal, 22 (47), 16929–16938. doi:10.1002/chem.201603160
Ionic Liquid Electrolytes for Safer Lithium Batteries: I. Investigation Around Optimal Formulation.
Moreno, M.; Simonetti, E.; Appetecchi, G. B.; Carewska, M.; Montanino, M.; Kim, G.-T.; Loeffler, N.; Passerini, S.
2016. ECS transactions, 73 (1), 67–73. doi:10.1149/07301.0067ecst
Exceptional long-life performance of lithium-ion batteries using ionic liquid-based electrolytes.
Elia, G. A.; Ulissi, U.; Jeong, S.; Passerini, S.; Hassoun, J.
2016. Energy & environmental science, 9 (10), 3210–3220. doi:10.1039/C6EE01295G
Enthalpy of formation and heat capacity of Li2MnO3.
Cupid, D. M.; Li, D.; Gebert, C.; Reif, A.; Flandorfer, H.; Seifert, H. J.
2016. Journal of the Ceramic Society of Japan, 124 (10), 1072–1082. doi:10.2109/jcersj2.16116
Local Electronic Structure in γ-LiAlO2 Studied by Single-Crystal 27Al NMR and DFT Calculations.
Bräuniger, T.; Groh, B.; Moudrakovski, I. L.; Indris, S.
2016. The journal of physical chemistry <Washington, DC> / A, 120 (40), 7839–7846. doi:10.1021/acs.jpca.6b07286
Towards Li(Ni0.33Mn0.33Co0.33)O2/graphite batteries with ionic liquid-based electrolytes. I. Electrodes’ behavior in lithium half-cells.
Simonetti, E.; Maresca, G.; Appetecchi, G. B.; Kim, G.-T.; Loeffler, N.; Passerini, S.
2016. Journal of power sources, 331, 426–434. doi:10.1016/j.jpowsour.2016.09.078
Effect of oxygen plasma treatment on the electrochemical performance of the rayon and polyacrylonitrile based carbon felt for the vanadium redox flow battery application.
Dixon, D.; Babu, D. J.; Langner, J.; Bruns, M.; Pfaffmann, L.; Bhaskar, A.; Schneider, J. J.; Scheiba, F.; Ehrenberg, H.
2016. Journal of power sources, 332, 240–248. doi:10.1016/j.jpowsour.2016.09.070
Thick electrodes for Li-ion batteries: A model based analysis.
Danner, T.; Singh, M.; Hein, S.; Kaiser, J.; Hahn, H.; Latz, A.
2016. Journal of power sources, 334, 191–201. doi:10.1016/j.jpowsour.2016.09.143
Mechanical measurements on lithium phosphorous oxynitride coated silicon thin film electrodes for lithium-ion batteries during lithiation and delithiation.
Al-Obeidi, A.; Kramer, D.; Boles, S. T.; Mönig, R.; Thompson, C. V.
2016. Applied physics letters, 109 (7), Art.Nr.: 071902. doi:10.1063/1.4961234
Full SiC power module with substrate integrated liquid cooling for battery electric vehices.
An, B. N.; Bernd, M.; Leyrer, B.; Blank, T.; Weber, M.; Loges, A.; Wetzel, T.; Kolb, J.
2016. Proceedings of the 9th International Conference on Integrated Power Electronics Systems (CIPS 2016), Nürnberg, March 8-10, 2016, VDE-Verl., Berlin
Evaluation of Ag-sinter pastes for the die attachment in power electronic modules using design of experiments.
An, B. N.; Kempf, M.; Leyrer, B.; Blank, T.; Kolb, J.; Weber, M.
2016. 18th European Conference on Power Electronics and Applications (EPE 2016), Karlsruhe, September 5-9, 2016. Proceedings on USB-Stick, Art.Nr. 7695455. doi:10.1109/EPE.2016.7695455
In Situ Monitoring of Fast Li-Ion Conductor Li7P3S11 Crystallization Inside a Hot-Press Setup.
Busche, M. R.; Weber, D. A.; Schneider, Y.; Dietrich, C.; Wenzel, S.; Leichtweiss, T.; Schroeder, D.; Zhang, W.; Weigand, H.; Walter, D.; Sedlmaier, S. J.; Houtarde, D.; Nazar, L. F.; Janek, J.
2016. Chemistry of materials, 28 (17), 6152–6165. doi:10.1021/acs.chemmater.6b02163
A highly integrated full SiC six-pack power module for automotive applications.
An, B. N.; Wegelin, V.; Bernd, M.; Leyrer, B.; Meisser, M.; Demattio, H.; Blank, T.; Weber, M.; Kolb, J.; Altstadt, J.
2016. PCIM Europe - Internationale Messe für Leistungselektronik, intelligente Antriebstechnik, erneuerbare Energie und Energiemanagement, Nürnberg, 10.-12.Mai 2016. Proceedings on CD-ROM, VDE-Verl., Berlin
Static characterization of discrete state-of-the-art SiC power transistors.
Meisser, M.; Demattio, H.; Blank, T.
2016. PCIM Europe - Internationale Messe für Leistungselektronik, intelligente Antriebstechnik, erneuerbare Energie und Energiemanagement, Nürnberg, 10.-12.Mai 2016. Proceedings on CD-ROM, VDE-Verl., Berlin
Low temperature silver sinter processes on ENIG surfaces.
Blank, T.; Bruns, M.; Kübel, C.; Leyrer, B.; Meisser, M.; Weber, M.; Rudzki, J.; Osterwald, F.; Wilke, K.; Busche, N.; Eisele, R.
2016. Proceedings of the 9th International Conference on Integrated Power Electronics Systems (CIPS 2016), Nürnberg, March 8-10, 2016, VDE-Verl., Berlin
High temperature thermal cycling performances of DBA, AMB and thick film power module substrates.
Hamilton, D.; Mawby, P.; Riches, S.; Meisser, M.; Mills, L.
2016. Proceedings of the 9th International Conference on Integrated Power Electronics Systems (CIPS 2016), Nürnberg, March 8-10, 2016, VDE-Verl., Berlin
Highly integrated SiC module with thick-film dielectric allows for high frequency operation.
Meisser, M.; Schmenger, M.; Bernd, M.; Leyrer, B.; Demattio, H.; Hamilton, D.; Mawby, P.; Blank, T.
2016. Proceedings of the 9th International Conference on Integrated Power Electronics Systems (CIPS 2016), Nürnberg, March 8-10, 2016, VDE-Verl., Berlin
Connector-less SiC power modules with integrated shunt - low-profile design for low inductance and low cost.
Meisser, M.; Demattio, H.; Hamilton, D.; Blank, T.
2016. 18th European Conference on Power Electronics and Applications (EPE 2016), Karlsruhe, September 5-9, 2016. Proceedings on USB-Stick, Art.Nr. 7695282. doi:10.1109/EPE.2016.7695282
Microwave synthesis of high-quality and uniform 4 nm ZnFe₂O₄ nanocrystals for application in energy storage and nanomagnetics.
Suchomski, C.; Breitung, B.; Witte, R.; Knapp, M.; Bauer, S.; Baumbach, T.; Reitz, C.; Brezesinski, T.
2016. Beilstein journal of nanotechnology, 7, 1350–1360. doi:10.3762/bjnano.7.126
Mesoporous hollow carbon spheres for lithium-sulfur batteries : distribution of sulfur and electrochemical performance.
Juhl, A. C.; Schneider, A.; Ufer, B.; Brezesinski, T.; Janek, J.; Froeba, M.
2016. Beilstein journal of nanotechnology, 7, 1229–1240. doi:10.3762/bjnano.7.114
Electrochemistry in Liquid Environments Challenges in the Presence of Accelerated Electrons.
Chakravadhanula, V. S. K.; Teodoro, T. S.; Scherer, T.; Garlapati, S. K.; Kobler, A.; Neelisetty, K. K.; Fawey, M. H.; Kuebel, C.
2016. Imaging & microscopy / EMC SPECIAL 2016, 18 (3), 24–27
Lithium and lithium-ion batteries: Challenges and prospects.
Passerini, S.; Scrosati, B.
2016. The Electrochemical Society interface, 25 (3), 85–87. doi:10.1149/2.F09163if
Lithium- and Manganese-Rich Oxide Cathode Materials for High-Energy Lithium Ion Batteries.
Wang, J.; He, X.; Paillard, E.; Laszczynski, N.; Li, J.; Passerini, S.
2016. Advanced energy materials, 6 (21), 1600906/1–17. doi:10.1002/aenm.201600906
All solid-state battery using layered oxide cathode, lithium-carbon composite anode and thio-LISICON electrolyte.
Ulissi, U.; Agostini, M.; Ito, S.; Aihara, Y.; Hassoun, J.
2016. Solid state ionics, 296, 13–17. doi:10.1016/j.ssi.2016.08.014
Nickel oxalate dihydrate nanorods attached to reduced graphene oxide sheets as a high-capacity anode for rechargeable lithium batteries.
Oh, H.-J.; Jo, C.-H.; Yoon, C. S.; Yashiro, H.; Kim, S.-J.; Passerini, S.; Sun, Y.-K.; Myung, S.-T.
2016. NPG Asia Materials, 8 (5), e270. doi:10.1038/am.2016.59
Bilayered Nanostructured V₂O₅·nH₂O for Metal Batteries.
Moretti, A.; Passerini, S.
2016. Advanced energy materials, 6 (23), 1600868/1–14. doi:10.1002/aenm.201600868
Facile synthesis of micrometer-long antimony nanowires by template-free electrodeposition for next generation Li-ion batteries.
Al-Salman, R.; Sedlmaier, S. J.; Sommer, H.; Brezesinski, T.; Janek, J.
2016. Journal of materials chemistry / A, 4 (33), 12726–12729. doi:10.1039/c6ta04731a
Monoclinic β-Li₂TiO₃: Neutron diffraction study and estimation of Li diffusion pathways.
Monchak, M.; Dolotko, O.; Mühlbauer, M. J.; Baran, V.; Senyshyn, A.; Ehrenberg, H.
2016. Solid state sciences, 61, 161–166. doi:10.1016/j.solidstatesciences.2016.09.008
Development and Characterization of High-Performance Sodium-Ion Cells based on Layered Oxide and Hard Carbon.
Keller, M.; Vaalma, C.; Buchholz, D.; Passerini, S.
2016. ChemElectroChem, 3 (7), 1030. doi:10.1002/celc.201600329
Toward On-and-Off Magnetism: Reversible Electrochemistry to Control Magnetic Phase Transitions in Spinel Ferrites.
Dasgupta, S.; Das, B.; Li, Q.; Wang, D.; Baby, T. T.; Indris, S.; Knapp, M.; Ehrenberg, H.; Fink, K.; Kruk, R.; Hahn, H.
2016. Advanced functional materials, 26 (41), 7507–7515. doi:10.1002/adfm.201603411
Structure formation and thermal stability of mono- and multilayers of ethylene carbonate on Cu(111): A model study of the electrode|electrolyte interface.
Bozorgchenani, M.; Naderian, M.; Farkhondeh, H.; Schnaidt, J.; Uhl, B.; Bansmann, J.; Groß, A.; Behm, R. J.; Buchner, F.
2016. The journal of physical chemistry <Washington, DC> / C, 120 (30), 16791–16803. doi:10.1021/acs.jpcc.6b05012
Ionic liquid-based electrolytes for “beyond lithium” battery technologies.
Giffin, G. A.
2016. Journal of materials chemistry / A, 4 (35), 13378–13389. doi:10.1039/C6TA05260F
Nitrogen Rich Hierarchically Organized Porous Carbon/Sulfur Composite Cathode Electrode for High Performance Li/S Battery: A Mechanistic Investigation by Operando Spectroscopic Studies.
Vinayan, B. P.; Diemant, T.; Lin, X.-M.; Cambaz, M. A.; Golla-Schindler, U.; Kaiser, U.; Jürgen Behm, R.; Fichtner, M.
2016. Advanced materials interfaces, 3 (19), 1600372/1–10. doi:10.1002/admi.201600372
Internal and External Temperature Monitoring of a Li-Ion Battery with Fiber Bragg Grating Sensors.
Novais, S.; Nascimento, M.; Grande, L.; Domingues, M. F.; Antunes, P.; Alberto, N.; Leitão, C.; Oliveira, R.; Koch, S.; Kim, G. T.; Passerini, S.; Pinto, J.
2016. Sensors, 16 (9), 1394. doi:10.3390/s16091394
Graphene derived carbon confined sulfur cathodes for lithium-sulfur batteries: Electrochemical impedance studies.
Ganesan, A.; Varzi, A.; Passerini, S.; Shaijumon, M. M.
2016. Electrochimica acta, 214, 129–138. doi:10.1016/j.electacta.2016.08.030
In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries.
Breitung, B.; Baumann, P.; Sommer, H.; Janek, J.; Brezesinski, T.
2016. Nanoscale, 8 (29), 14048–14056. doi:10.1039/c6nr03575b
Association and Diffusion of Li+ in Carboxymethylcellulose Solutions for Environmentally Friendly Li-ion Batteries.
Casalegno, M.; Castiglione, F.; Passarello, M.; Mele, A.; Passerini, S.; Raos, G.
2016. ChemSusChem, 9 (14), 1804–1813. doi:10.1002/cssc.201600160
Influence of oligo(ethylene oxide) substituents on pyrrolidinium-based ionic liquid properties, Li+ solvation and transport.
Zamory, J. von; Giffin, G. A.; Jeremias, S.; Castiglione, F.; Mele, A.; Paillard, E.; Passerini, S.
2016. Physical chemistry, chemical physics, 18 (31), 21539–21547. doi:10.1039/c6cp02092e
Fatigue in 0.5Li(2)MnO(3):0.5Li(Ni1/3Co1/3Mn1/3)O-2 positive electrodes for lithium ion batteries.
Riekehr, L.; Liu, J.; Schwarz, B.; Sigel, F.; Kerkamm, I.; Xia, Y.; Ehrenberg, H.
2016. Journal of power sources, 325, 391–403. doi:10.1016/j.jpowsour.2016.06.014
Rational design of new electrolyte materials for electrochemical double layer capacitors.
Schütter, C.; Husch, T.; Viswanathan, V.; Passerini, S.; Balducci, A.; Korth, M.
2016. Journal of power sources, 326, 541–548. doi:10.1016/j.jpowsour.2016.06.022
Electrochemical behavior of layered vanadium oxychloride in rechargeable lithium ion batteries.
Gao, P.; Lin, X.-M.; Reddy, M. A.; Zhang, L.; Diemant, T.; Behm, R. J.; Fichtner, M.
2016. Journal of the Electrochemical Society, 163 (10), A2326-A2332. doi:10.1149/2.0851610jes
Laser printing and femtosecond laser structuring of electrode materials for the manufacturing of 3D lithium-ion micro-batteries.
Smyrek, P.; Kim, H.; Zheng, Y.; Seifert, H. J.; Piqué, A.; Pfleging, W.
2016. Laser 3D Manufacturing (Conference) III : San Francisco, California, United States, 15 - 18 February 2016. Ed.: B. Gu, 973806, SPIE, Bellingham (Wash.). doi:10.1117/12.2211546
Elucidating the Impact of Cobalt Doping on the Lithium Storage Mechanism in Conversion/Alloying-Type Zinc Oxide Anodes.
Müller, F.; Geiger, D.; Kaiser, U.; Passerini, S.; Bresser, D.
2016. ChemElectroChem, 3 (9), 1311–1319. doi:10.1002/celc.201600179
Electrochemical Study of a CuO-Carbon Conversion Anode in Ionic Liquid Electrolyte for Application in Li-Ion Batteries.
Verrelli, R.; Laszczynski, N.; Passerini, S.; Hassoun, J.
2016. Energy technology, 4 (6), 700–705. doi:10.1002/ente.201500503
Modeling crack growth during Li extraction and insertion within the second half cycle.
Klinsmann, M.; Rosato, D.; Kamlah, M.; McMeeking, R. M.
2016. Journal of power sources, 331, 32–42. doi:10.1016/j.jpowsour.2016.08.142
New Electro-Thermal Battery Pack Model of an Electric Vehicle.
Alhanouti, M.; Gießler, M.; Blank, T.; Gauterin, F.
2016. Energies, 9 (7), 563. doi:10.3390/en9070563
A combined in-situ XAS-DRIFTS study unraveling adsorbate induced changes on the Pt nanoparticle structure.
Brieger, C.; Melke, J.; Bosch, N. van der; Reinholz, U.; Riesemeier, H.; Guilherme Buzanich, A.; Kayarkatte, M. K.; Derr, I.; Schökel, A.; Roth, C.
2016. Journal of catalysis, 339, 57–67. doi:10.1016/j.jcat.2016.03.034
Piezoelectricity and rotostriction through polar and non-polar coupled instabilities in bismuth-based piezoceramics.
Acosta, M.; Schmitt, L. A.; Cazorla, C.; Studer, A.; Zintler, A.; Glaum, J.; Kleebe, H.-J.; Donner, W.; Hoffman, M.; Rödel, J.; Hinterstein, M.
2016. Scientific reports, 6, 28742. doi:10.1038/srep28742
The critical role of lithium nitrate in the gas evolution of lithium–sulfur batteries.
Jozwiuk, A.; Berkes, B. B.; Weiß, T.; Sommer, H.; Janekac, J.; Brezesinski, T.
2016. Energy & environmental science, 9, 2603–2608. doi:10.1039/C6EE00789A
On the gassing behavior of lithium-ion batteries with NCM523 cathodes.
Berkes, B. B.; Schiele, A.; Sommer, H.; Brezesinski, T.; Janek, J.
2016. Journal of solid state electrochemistry, 20 (11), 2961–2967. doi:10.1007/s10008-016-3362-9
Non-Aqueous K-Ion Battery Based on Layered K0.3MnO2 and Hard Carbon/Carbon Black.
Vaalma, C.; Giffin, G. A.; Buchholz, D.; Passerini, S.
2016. Journal of the Electrochemical Society, 163 (7), A1295-A1299. doi:10.1149/2.0921607jes
The use of protic ionic liquids with cathodes for sodium-ion batteries.
Vogl, T.; Vaalma, C.; Buchholz, D.; Secchiaroli, M.; Marassi, R.; Passerini, S.; Balducci, A.
2016. Journal of materials chemistry / A, 4 (27), 10472–10478. doi:10.1039/c6ta02277d
A 4 Farad high energy electrochemical double layer capacitor prototype operating at 3.2 V (IES prototype).
Varzi, A.; Schütter, C.; Krummacher, J.; Raccichini, R.; Wolff, C.; Kim, G.-T.; Rösler, S.; Blumenröder, B.; Schubert, T.; Passerini, S.; Balducci, A.
2016. Journal of power sources, 326, 162–169. doi:10.1016/j.jpowsour.2016.06.123
Dynamics and morphology of solid electrolyte interphase (SEI).
Single, F.; Horstmann, B.; Latz, A.
2016. Physical chemistry, chemical physics, 18 (27), 17810–17814. doi:10.1039/c6cp02816k
Macromol. Rapid Commun. 14/2016.
Sharova, V.; Kim, G.-T.; Giffin, G. A.; Lex-Balducci, A.; Passerini, S.
2016. Macromolecular rapid communications, 37 (14), 1228. doi:10.1002/marc.201670058
Lithium–air battery cathode modification via an unconventional thermal method employing borax.
Fiedler, A.; Vogt, A. P.; Pfaffmann, L.; Trouillet, V.; Breukelgen, J. T.; Köppe, R.; Barner-Kowollik, C.; Ehrenberg, H.; Scheib, F.
2016. RSC Advances, 6 (70), 66307–66310. doi:10.1039/c6ra05685g
Thermal properties and ionic conductivity of Li1,3Ti1,7Al0,3(PO4)3 solid electrolytes sintered by field-assisted sintering.
Bucharsky, E. C.; Schell, K. G.; Hupfer, T.; Hoffmann, M. J.; Rohde, M.; Seifert, H. J.
2016. Ionics, 22 (7), 1043–1049. doi:10.1007/s11581-015-1628-3
The structure of water at a Pt(111) electrode and the potential of zero charge studied from first principles.
Sakong, S.; Forster-Tonigold, K.; Groß, A.
2016. The journal of chemical physics, 144 (19), 194701. doi:10.1063/1.4948638
Theoretical Studies on the Adsorption of 1-Butyl-3-methyl-imidazolium-hexafluorophosphate (BMI/PF 6) on Au(100) Surfaces.
Plöger, J.; Mueller, J. E.; Jacob, T.; Anton, J.
2016. Topics in catalysis, 59 (8-9), 792–801. doi:10.1007/s11244-016-0552-8
An ether-functionalised cyclic sulfonium based ionic liquid as an electrolyte for electrochemical double layer capacitors.
Nealea, A., R.; Murphy, S.; Goodrich, P.; Schütter, C.; Hardacre, C.; Passerini, S.; Balducci, A.; Jacquemin, J.
2016. Journal of power sources, 326, 549–559. doi:10.1016/j.jpowsour.2016.06.085
A High-Voltage and High-Capacity Li1+xNi0.5Mn1.5O4 Cathode Material: From Synthesis to Full Lithium-Ion Cells.
Mancini, M.; Axmann, P.; Gabrielli, G.; Kinyanjui, M.; Kaiser, U.; Wohlfahrt-Mehrens, M.
2016. ChemSusChem, 9 (14), 1843–1849. doi:10.1002/cssc.201600365
Theory of reactions at electrified interfaces.
Lück, J.; Latz, A.
2016. Physical chemistry, chemical physics, 18 (27), 17799–17804. doi:10.1039/c6cp02681h
Understanding problems of lithiated anodes in lithium oxygen full-cells.
Kwak, W.-J.; Shin, H.-J.; Reiter, J.; Tsiouvaras, N.; Hassoun, J.; Passerini, S.; Scrosati, B.; Sun, Y.-K.
2016. Journal of materials chemistry / A, 4 (27), 10467–10471. doi:10.1039/c6ta03013k
Local structure modification in lithium rich layered Li-Mn-O cathode material.
Giorgetti, M.; Wang, D.; Aquilanti, G.; Buchholz, D.; Passerini, S.
2016. Journal of physics / Conference Series, 712 (1), 012130. doi:10.1088/1742-6596/712/1/012130
Foreword.
Favier, F.; Balducci, A.; Taberna, P.-L.
2016. Electrochimica acta, 213, 207. doi:10.1016/j.electacta.2016.07.071
In-Depth Interfacial Chemistry and Reactivity Focused Investigation of Lithium-Imide- and Lithium-Imidazole-Based Electrolytes.
Eshetu, G. G.; Diemant, T.; Grugeon, S.; Behm, R. J.; Laruelle, S.; Armand, M.; Passerini, S.
2016. ACS applied materials & interfaces, 8 (25), 16087–16100. doi:10.1021/acsami.6b04406
An Overview and Future Perspectives of Aluminum Batteries.
Elia, G. A.; Marquardt, K.; Hoeppner, K.; Fantini, S.; Lin, R.; Knipping, E.; Peters, W.; Drillet, J.-F.; Passerini, S.; Hahn, R.
2016. Advanced materials, 28 (35), 7564–7579. doi:10.1002/adma.201601357
Layered-to-Tunnel Structure Transformation and Oxygen Redox Chemistry in LiRhO2 upon Li Extraction and Insertion.
Mikhailova, D.; Karakulina, O. M.; Batuk, D.; Hadermann, J.; Abakumov, A. M.; Herklotz, M.; Tsirlin, A. A.; Oswald, S.; Giebeler, L.; Schmidt, M.; Eckert, J.; Knapp, M.; Ehrenberg, H.
2016. Inorganic chemistry, 55 (14), 7079–7089. doi:10.1021/acs.inorgchem.6b01008
Enhancement of electrochemical performance by simultaneous substitution of Ni and Mn with Fe in Ni-Mn spinel cathodes for Li-ion batteries.
Kiziltas-Yavuz, N.; Yavuz, M.; Indris, S.; Bramnik, N. N.; Knapp, M.; Dolotko, O.; Das, B.; Ehrenberg, H.; Bhaskar, A.
2016. Journal of power sources, 327, 507–518. doi:10.1016/j.jpowsour.2016.07.047
The influence of cycling temperature and cycling rate on the phase specific degradation of a positive electrode in lithium ion batteries: A post mortem analysis.
Darma, M. S. D.; Lang, M.; Kleiner, K.; Mereacre, L.; Liebau, V.; Fauth, F.; Bergfeldt, T.; Ehrenberg, H.
2016. Journal of power sources, 327, 714–725. doi:10.1016/j.jpowsour.2016.07.115
Experiment-Driven Modeling of Crystalline Phosphorus Nitride P₃N₅: Wide-Ranging Implications from a Unique Structure.
Tolhurst, T. M.; Braun, C.; Boyko, T. D.; Schnick, W.; Moewes, A.
2016. Chemistry - a European journal, 22 (30), 10475–10483. doi:10.1002/chem.201601149
Post mortem analysis of fatigue mechanisms in LiNi0.8Co0.15Al0.05O₂ – LiNi0.5Co0.2Mn0.3O₂ – LiMn₂O₄/graphite lithium ion batteries.
Lang, M.; Darma, M. S. D.; Kleiner, K.; Riekehr, L.; Mereacre, L.; Pérez, M. Á.; Liebau, V.; Ehrenberg, H.
2016. Journal of power sources, 326, 397–409. doi:10.1016/j.jpowsour.2016.07.010
Lithiation-driven structural transition of VO₂F into disordered rock-salt LiₓVO₂F.
Chen, R.; Maawad, E.; Knapp, M.; Ren, S.; Beran, P.; Witter, R.; Hempelmann, R.
2016. RSC Advances, 6 (69), 65112–65118. doi:10.1039/c6ra14276a
Li₄Ge₂B as a new derivative of the Mo₂B₅ and Li₅Sn₂ structure types.
Pavlyuk, V.; Ciesielski, W.; Rozdzynska-Kielbik, B.; Dmytriv, G.; Ehrenberg, H.
2016. Acta crystallographica / C, 72 (7), 561–565. doi:10.1107/S2053229616009384
Single-crystal neutron diffraction on γ-LiAlO2: Structure determination and estimation of lithium diffusion pathway.
Wiedemann, D.; Indris, S.; Meven, M.; Pedersen, B.; Boysen, H.; Uecker, R.; Heitjans, P.; Lerch, M.
2016. Zeitschrift für Kristallographie / Crystalline materials, 231 (3), 189–193. doi:10.1515/zkri-2015-1896
What Happens Structurally and Electronically during the Li Conversion Reaction of CoFe2O4 Nanoparticles: An Operando XAS and XRD Investigation.
Permien, S.; Indris, S.; Schürmann, U.; Kienle, L.; Zander, S.; Doyle, S.; Bensch, W.
2016. Chemistry of materials, 28 (2), 434–444. doi:10.1021/acs.chemmater.5b01754
Study of water-based lithium titanate electrode processing: the role of pH and binder molecular structure.
Vieira Carvalho, D.; Loeffler, N.; Kim, G.-T.; Marinaro, M.; Wohlfahrt-Mehrens, M.; Passerini, S.
2016. Polymers, 8 (8), 276. doi:10.3390/polym8080276
Im Großen wie im Kleinen – Wirtschaftlichkeit von stationären PV-Speichersystemen nun auch bei Mehrfamilienhäusern?!.
Munzke, N.
2016. 31.Symposium Photovoltaische Solarenergie, Bad Staffelstein, 9.-11.März 2016, 162–163, Ostbayerisches Technologie-Transfer-Institut e.V. (OTTI), Regensburg
Structure and dielectric dispersion in cubic-like 0.5K0.5Na0.5NbO3-0.5Na1/2Bi1/2TiO3 ceramic.
Liu, L.; Knapp, M.; Schmitt, L. A.; Ehrenberg, H.; Fang, L.; Fuess, H.; Hoelzel, M.; Hinterstein, M.
2016. epl, 114 (4), 47011. doi:10.1209/0295-5075/114/47011
Elucidation of the Conversion Reaction of CoMnFeO4 Nanoparticles in Lithium Ion Battery Anode via Operando Studies.
Permien, S.; Indris, S.; Hansen, A.-L.; Scheuermann, M.; Zahn, D.; Schürmann, U.; Neubüser, G.; Kienle, L.; Yegudin, E.; Bensch, W.
2016. ACS applied materials & interfaces, 8 (24), 15320–15332. doi:10.1021/acsami.6b03185
Investigation of the diffusion behavior in Sn-xAg-yCu/Cu solid state diffusion couples.
Yuan, Y.; Li, D.; Guan, Y.; Seifert, H. J.; Moelans, N.
2016. Journal of alloys and compounds, 686, 794–802. doi:10.1016/j.jallcom.2016.06.228
Principles that maximise performance.
Barry, J.
2016. ees International Magazine, 2016 (2), 39–42
Short-term power fluctuations in densely clustered PV-Battery systems.
Barry, J.; Munzke, N.; Thomas, J.
2016. 32nd European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC), München, June 20-24, 2016. Proceedings on DVD, 2393–2398
Performance evaluation of household Li-ion battery storage systems.
Munzke, N.; Barry, J.; Schwarz, B.
2016. 32nd European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC), München, June 20-24, 2016. Proceedings on DVD, 1516–1521. doi:10.4229/EUPVSEC20162016-5AO.9.5
A thermodynamic study of the cadmium–neodymium system.
Skołyszewska-Kühberger, B.; Reichmann, T. L.; Ipser, H.
2016. Monatshefte für Chemie, 147 (6), 1001–1008. doi:10.1007/s00706-016-1670-5
Direct laser interference patterning and ultrafast laser-induced micro/nano structuring of current collectors for lithium-ion batteries.
Zheng, Y.; An, Z.; Smyrek, P.; Seifert, H. J.; Kunze, T.; Lang, V.; Lasagni, A. F.; Pfleging, W.
2016. Laser-Based Micro-and Nanoprocessing X; San Francisco; United States; 16 - 18 February 2016 Ed. U. Klotzbach, 97361B, SPIE, Billingham (Wash.). doi:10.1117/12.2220111
Post-mortem characterization of fs laser-generated micro-pillars in Li(Ni1/3Mn1/3Co1/3)O2 electrodes by laser-induced breakdown spectroscopy.
Smyrek, P.; Zheng, Y.; Seifert, H. J.; Pfleging, W.
2016. Laser-based Micro- and Nanoprocessing X., San Francisco, California, United States, 13 - 18 February 2016. Ed.: U. Klotzbach, 97361C/1–6, SPIE, Bellingham (Wash.). doi:10.1117/12.2210815
Variations in structure and electrochemistry of iron- and titanium-doped lithium nickel manganese oxyfluoride spinels.
Hoeweling, A.; Stenzel, D.; Gesswein, H.; Kaus, M.; Indris, S.; Bergfeldt, T.; Binder, J. R.
2016. Journal of power sources, 315, 269–276. doi:10.1016/j.jpowsour.2016.03.023
Development and Characterization of High-Performance Sodium-Ion Cells based on Layered Oxide and Hard Carbon.
Keller, M.; Vaalma, C.; Buchholz, D.; Passerini, S.
2016. ChemElectroChem, 3 (7), 1124–1132. doi:10.1002/celc.201600152
Comparison of electrospun and conventional LiFePO4/C composite cathodes for Li-ion batteries.
Bachtin, K.; Kaus, M.; Pfaffmann, L.; Indris, S.; Knapp, M.; Roth, C.; Ehrenberg, H.
2016. Materials science and engineering / B, 213, 98–104. doi:10.1016/j.mseb.2016.04.006
Two-Dimensional Titanium Carbide/RGO Composite for High-Performance Supercapacitors.
Zhao, C.; Wang, Q.; Zhang, H.; Passerini, S.; Qian, X.
2016. ACS Applied Materials and Interfaces, 8 (24), 15661–15667. doi:10.1021/acsami.6b04767
Beneficial effect of propane sultone and tris(trimethylsilyl) borate as electrolyte additives on the cycling stability of the lithium rich nickel manganese cobalt (NMC) oxide.
Birrozzi, A.; Laszczynski, N.; Hekmatfar, M.; Von Zamory, J.; Giffin, G. A.; Passerini, S.
2016. Journal of power sources, 325, 525–533. doi:10.1016/j.jpowsour.2016.06.054
Proposal of a framework for scale-up life cycle inventory : A case of nanofibers for lithium iron phosphate cathode applications.
Simon, B.; Bachtin, K.; Kiliç, A.; Amor, B.; Weil, M.
2016. Integrated environmental assessment and management, 12 (3), 465–477. doi:10.1002/ieam.1788
Development of dense solid state thin-film electrolyte for fluoride ion batteries.
Zhang, L.; Gao, P.; Fichtner, M.; Anji Reddy, M.
2016. Journal of alloys and compounds, 684, 733–738. doi:10.1016/j.jallcom.2016.04.196
Blend formed by oxygen deficient MoO3−δ oxides as lithium-insertion compounds.
Hashem, A. M. A.; Abbas, S. M.; Abdel-Ghany, A. E.; Eid, A. E. A.; Abdel-Khalek, A. A.; Indris, S.; Ehrenberg, H.; Mauger, A.; Julien, C. M.
2016. Journal of Alloys and Compounds, 686, 744–752. doi:10.1016/j.jallcom.2016.06.043
Evolution of microstructure and its relation to ionic conductivity in Li1 + xAlxTi2 − x(PO4)3.
Hupfer, T.; Bucharsky, E. C.; Schella, K. G.; Senyshyn, A.; Monchak, M.; Hoffmann, M. J.; Ehrenberg, H.
2016. Solid State Ionics / Special Issue, 288, 235–239. doi:10.1016/j.ssi.2016.01.036
Facile hybridization of Ni@Fe2O3 superparticles with functionalized reduced graphene oxide and its application as anode material in lithium-ion batteries.
Backert, G.; Oschmann, B.; Tahir, M. N. A.; Müller, F.; Lieberwirth, I.; Balke, B.; Tremel, W.; Passerini, S.; Zentel, R.
2016. Journal of colloid and interface science, 478, 155–163. doi:10.1016/j.jcis.2016.06.011
Microwave Crystallization of Lithium Aluminum Germanium Phosphate Solid-State Electrolyte.
Mahmoud, M. M.; Cui, Y.; Rohde, M.; Ziebert, C.; Link, G.; Seifert, H. J.
2016. Materials, 9 (7), 506. doi:10.3390/ma9070506
Structural properties and application in lithium cells of Li(Ni0.5Co0.5)1−yFeyO2 (0 ≤ y ≤ 0.25) prepared by sol–gel route: Doping optimization.
Abdel-Ghany, A. E.; Hashem, A. M.; Elzahany, E. A.; Abuzeid, H. A.; Indris, S.; Nikolowski, K.; Ehrenberg, H.; Zaghib, K.; Mauger, A.; Julien, C. M.
2016. Journal of power sources, 320, 168–179. doi:10.1016/j.jpowsour.2016.04.087
Selenium and selenium-sulfur cathode materials for high-energy rechargeable magnesium batteries.
Zhao-Karger, Z.; Lin, X.; Bonatto Minella; Bonatto, C.; Wang, D.; Diemant, T.; Behm, R. J.; Fichtner, M.
2016. Journal of power sources, 323, 213–219. doi:10.1016/j.jpowsour.2016.05.034
Thermodynamic assessment of the Cu-Li system and prediction of enthalpy of mixing of Cu-Li-Sn liquid alloys.
Li, D.; Fürtauer, S.; Flandorfer, H.; Cupid, D. M.
2016. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 53 (June), 105–115. doi:10.1016/j.calphad.2016.04.003
Modeling crack growth during Li insertion in storage particles using a fracture phase field approach.
Klinsmann, M.; Rosato, D.; Kamlah, M.; McMeeking, R. M.
2016. Journal of the Mechanics and Physics of Solids, 92, 313–344. doi:10.1016/j.jmps.2016.04.004
Zur Berücksichtigung von Batteriespeichern in Dimensionierungsmodellen für dezentrale Energiesysteme.
Ried, S.; Reuter, M.; Jochem, P.; Fichtner, W.
2016. Einsatz von OR-Verfahren zur Analyse von Fragestellungen im Umweltbereich : Tagungsband zum Workshop der GOR-Arbeitsgruppe „OR im Umweltschutz“ am 20./21. Februar 2014 in Heidelberg und am 25./26. Februar 2015 in Aachen. Hrsg.: E. Merkel, 59–76, Shaker, Aachen
Observing Local Oxygen Interstitial Diffusion in Donor-Doped Ceria by 17O NMR Relaxometry.
Heinzmann, R.; Issac, I.; Eufinger, J.-P.; Ulbrich, G.; Lerch, M.; Janek, J.; Indris, S.
2016. The journal of physical chemistry <Washington, DC> / C, 120 (16), 8568–8577. doi:10.1021/acs.jpcc.6b03341
Li₄Ti₅O₁₂/Ketjen Black with open conductive frameworks for high-performance lithium-ion batteries.
Zhang, Y.; Dong, H.; Zhang, H.; Liu, Y.; Ji, M.; Xu, Y.; Wang, Q.; Luo, L.
2016. Electrochimica Acta, 201, 179–186. doi:10.1016/j.electacta.2016.03.128
Solvent-surface interactions control the phase structure in laser-generated iron-gold core-shell nanoparticles.
Wagener, P.; Jakobi, J.; Rehbock, C.; Chakravadhanula, V. S. K.; Thede, C.; Wiedwald, U.; Bartsch, M.; Kienle, L.; Barcikowski, S.
2016. Scientific reports, 6, 23352. doi:10.1038/srep23352
The Influence of Cation Structure on the Chemical-Physical Properties of Protic Ionic Liquids.
Vogl, T.; Goodrich, P.; Jacquemin, J.; Passerini, S.; Balducci, A.
2016. Journal of Physical Chemistry C, 120 (16), 8525–8533. doi:10.1021/acs.jpcc.6b01945
Probing the characteristics of casein as green binder for non-aqueous electrochemical double layer capacitors’ electrodes.
Varzi, A.; Raccichini, R.; Marinaro, M.; Wohlfahrt-Mehrens, M.; Passerini, S.
2016. Journal of power sources, 326, 672–679. doi:10.1016/j.jpowsour.2016.03.072
Quaternary Polymer Electrolytes Containing an Ionic Liquid and a Ceramic Filler.
Sharova, V.; Kim, G.-T.; Giffin, G. A.; Lex-Balducci, A.; Passerini, S.
2016. Macromolecular rapid communications, 37 (14), 1188–1193. doi:10.1002/marc.201600025
Hierarchical Carbon with High Nitrogen Doping Level: A Versatile Anode and Cathode Host Material for Long-Life Lithium-Ion and Lithium-Sulfur Batteries.
Reitz, C.; Breitung, B.; Schneider, A.; Wang, D.; Lehr, M. von der; Leichtweiss, T.; Janek, J.; Hahn, H.; Brezesinski, T.
2016. ACS applied materials & interfaces, 8 (16), 10274–10282. doi:10.1021/acsami.5b12361
Insights into bulk electrolyte effects on the operative voltage of electrochemical double-layer capacitors.
Ray, P.; Dohm, S.; Husch, T.; Schütter, C.; Persson, K. A.; Balducci, A.; Kirchner, B.; Korth, M.
2016. The journal of physical chemistry <Washington, DC> / C, 120 (23), 12325–12336. doi:10.1021/acs.jpcc.6b00891
Development of a water based process for stable conversion cathodes on the basis of FeF₃.
Pohl, A.; Faraz, M.; Schröder, A.; Baunach, M.; Schabel, W.; Guda, A.; Shapovalov, V.; Soldatov, A.; Chakravadhanula, V. S. K.; Kübel, C.; Witte, R.; Hahn, H.; Diemant, T.; Behm, R. J.; Emerich, H.; Fichtner, M.
2016. Journal of power sources, 313, 213–222. doi:10.1016/j.jpowsour.2016.02.080
Oxygen-Dependent Photocatalytic Water Reduction with a Ruthenium(imidazolium) Chromophore and a Cobaloxime Catalyst.
Petermann, L.; Staehle, R.; Pfeifer, M.; Reichardt, C.; Sorsche, D.; Wächtler, M.; Popp, J.; Dietzek, B.; Rau, S.
2016. Chemistry - A European Journal. doi:10.1002/chem.201505113
A Lithium-Ion Battery with Enhanced Safety Prepared using an Environmentally Friendly Process.
Mueller, F.; Loeffler, N.; Kim, G.-T.; Diemant, T.; Behm, R. J.; Passerini, S.
2016. ChemSusChem, 9 (11), 1290–1298. doi:10.1002/cssc.201600296
Toward pre-lithiatied high areal capacity silicon anodes for Lithium-ion batteries.
Marinaro, M.; Weinberger, M.; Wohlfahrt-Mehrens, M.
2016. Electrochimica Acta, 206, 99–107. doi:10.1016/j.electacta.2016.03.139
Comprehensive Understanding of High Polar Polyacrylonitrile as an Effective Binder for Li-Ion Battery Nano-Si Anodes.
Luo, L.; Xu, Y.; Zhang, H.; Han, X.; Dong, H.; Xu, X.; Chen, C.; Zhang, Y.; Lin, J.
2016. ACS Applied Materials and Interfaces, 8 (12), 8154–8161. doi:10.1021/acsami.6b03046
In Situ Coating of Li[Ni0.33Mn0.33Co0.33]O₂ Particles to Enable Aqueous Electrode Processing.
Loeffler, N.; Kim, G.-T.; Mueller, F.; Diemant, T.; Kim, J.-K.; Behm, R. J.; Passerini, S.
2016. ChemSusChem, 9 (10), 1112–1117. doi:10.1002/cssc.201600353
A Long-Life Lithium Ion Battery with Enhanced Electrode/Electrolyte Interface by Using an Ionic Liquid Solution.
Elia, G. A.; Ulissi, U.; Mueller, F.; Reiter, J.; Tsiouvaras, N.; Sun, Y.-K.; Scrosati, B.; Passerini, S.; Hassoun, J.
2016. Chemistry - A European Journal, 22 (20), 6808–6814. doi:10.1002/chem.201505192
High-Performance Low-Temperature Li+ Intercalation in Disordered Rock-Salt Li-Cr-V Oxyfluorides.
Chen, R.; Ren, S.; Mu, X.; Maawad, E.; Zander, S.; Hempelmann, R.; Hahn, H.
2016. ChemElectroChem, 3 (6), 892–895. doi:10.1002/celc.201600033
Insight on the Li2S electrochemical process in a composite configuration electrode.
Carbone, L.; Verrelli, R.; Gobet, M.; Peng, J.; Devany, M.; Scrosati, B.; Greenbaum, S.; Hassoun, J.
2016. New Journal of Chemistry, 40 (3), 2935–2943. doi:10.1039/c5nj03402g
Vanadium Oxyfluoride/Few-Layer Graphene Composite as a High-Performance Cathode Material for Lithium Batteries.
Cambaz, M. A.; Vinayan, B. P.; Clemens, O.; Munnangi, A. R.; Chakravadhanula, V. S. K.; Kübel, C.; Fichtner, M.
2016. Inorganic chemistry, 55 (8), 3789–3796. doi:10.1021/acs.inorgchem.5b02687
In situ TEM studies of micron-sized all-solid-state fluoride ion batteries: Preparation, prospects, and challenges.
Hammad Fawey, M.; Chakravadhanula, V. S. K.; Reddy, M. A.; Rongeat, C.; Scherer, T.; Hahn, H.; Fichtner, M.; Kübel, C. K. U.
2016. Microscopy research and technique, 79 (7), 615–624. doi:10.1002/jemt.22675
Optimierung der Anlagen- und Prozessparameter für die zuverlässige Fertigung kupferbasierter sequentieller Chip-Verbindungen in der Leistungselektronik.
Kästle, C.; Blank, T.; Sedlmair, J.; Weber, M.; Franke, J.
2016. Elektronische Baugruppen und Leiterplatten EBL 2016 : hochentwickelte Baugruppen aus Europa; 6. DVS-GMM-Tagung, Fellbach, 16.-17. Februar 2016. Hrsg.: K.D. Lang, 52–58, VDE-Verl., Berlin
Electrochemical lithiation/delithiation of SnP₂O₇ observed by in situ XRD and ex situ ⁷Li/³¹P NMR, and ¹¹⁹Sn Mössbauer spectroscopy.
Bezza, I.; Kaus, M.; Riekehr, L.; Pfaffmann, L.; Doyle, S. E. J.; Indris, S.; Ehrenberg, H.; Solhy, A.; Saadoune, I.
2016. Physical Chemistry Chemical Physics, 18 (15), 10375–10382. doi:10.1039/c6cp01424k
Thermophysical properties of LiCoO2-LiMn2O4 blended electrode materials for Li-ion batteries.
Gotcu, P.; Seifert, H. J.
2016. Physical chemistry, chemical physics, 18 (15), 10550–10562. doi:10.1039/c6cp00887a
Surface properties and graphitization of polyacrylonitrile based fiber electrodes affecting the negative half-cell reaction in vanadium redox flow batteries.
Langner, J.; Bruns, M. P.; Dixon, D.; Nefedov, A. A.; Wöll, C. H.; Scheiba, F.; Ehrenberg, H.; Roth, C.; Melke, J.
2016. Journal of power sources, 321 (July), 210–218. doi:10.1016/j.jpowsour.2016.04.128
Neutron diffraction study of (KₓNa₁₋ₓ)NbO₃-based ceramics from low and high temperatures.
Mgbemere, H.; Schneider, G.; Hoelzel, M.; Hinterstein, M.
2016. Journal of applied crystallography, 49, 891–901. doi:10.1107/S1600576716005197
Stress-modulated relaxor-to-ferroelectric transition in lead-free (N a1/2 B i1/2)Ti O₃-BaTi O₃ ferroelectrics.
Schader, F. H.; Wang, Z.; Hinterstein, M.; Daniels, J. E.; Webber, K. G.
2016. Physical Review B - Condensed Matter and Materials Physics, 93 (13), 134111. doi:10.1103/PhysRevB.93.134111
A sample cell for in situ electric-field-dependent structural characterization and macroscopic strain measurements.
Hossain, M. J.; Wang, L.; Wang, Z.; Khansur, N. H.; Hinterstein, M.; Kimpton, J. A.; Daniels, J. E.
2016. Journal of Synchrotron Radiation, 23 (3), 694–699. doi:10.1107/S1600577516005075
Tuning Transition Metal Oxide-Sulfur Interactions for Long Life Lithium Sulfur Batteries: The "goldilocks" Principle.
Liang, X.; Kwok, C. Y.; Lodi-Marzano, F.; Pang, Q.; Cuisinier, M.; Huang, H.; Hart, C. J.; Houtarde, D.; Kaup, K.; Sommer, H.; Brezesinski, T.; Janek, J.; Nazar, L. F.
2016. Advanced Energy Materials, 6 (6), 1501636. doi:10.1002/aenm.201501636
Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts.
Busche, M. R.; Drossel, T.; Leichtweiss, T.; Weber, D. A.; Falk, M.; Schneider, M.; Reich, M.-L.; Sommer, H.; Adelhelm, P.; Janek, J.
2016. Nature Chemistry, 8 (5), 426–434. doi:10.1038/nchem.2470
How to Improve Capacity and Cycling Stability for Next Generation Li-O₂ Batteries: Approach with a Solid Electrolyte and Elevated Redox Mediator Concentrations.
Bergner, B. J.; Busche, M. R.; Pinedo, R.; Berkes, B. B.; Schröder, D.; Janek, J.
2016. ACS applied materials & interfaces, 8 (12), 7756–7765. doi:10.1021/acsami.5b10979
Toward understanding the lithiation/delithiation process in Fe0.5TiOPO₄/C electrode material for lithium-ion batteries.
Lasri, K.; Mahmoud, A.; Saadoune, I.; Sougrati, M. T.; Stievano, L.; Lippens, P.-E.; Hermann, R. P.; Ehrenberg, H.
2016. Solar Energy Materials and Solar Cells, 148, 11–19. doi:10.1016/j.solmat.2015.11.021
The phase diagram of K0.5Na0.5O3-Bi1/2Na1/2TiO3.
Liu, L.; Knapp, M.; Ehrenberg, H.; Fang, L.; Schmidt, L. A.; Fuess, H.; Hoelzel, M.; Hinterstein, M.
2016. Journal of Applied Crystallography, 49, 574–584. doi:10.1107/S1600576716002909
Boosting the power performance of multilayer graphene as lithium-ion battery anode via unconventional doping with in-situ formed Fe nanoparticles.
Raccichini, R.; Varzi, A.; Chakravadhanula, V. S. K.; Kübel, C.; Passerini, S.
2016. Scientific reports, 6, 23585. doi:10.1038/srep23585
Facile Synthesis of Carbon-Metal Fluoride Nanocomposites for Lithium-Ion Batteries.
Reddy, M. A.; Breitung, B.; Wall, C.; Trivedi, S.; Chakravadhanula, V. S. K.; Helen, M.; Fichtner, M.
2016. Energy technology, 4 (1), 201–211. doi:10.1002/ente.201500358
Kinetic Passivation Effect of Localized Differential Aeration on Brass.
Kuznetsov, V.; Estrada-Vargas, A.; Makjusch, A.; Berkes, B. B.; Bandarenka, A. S.; Souto, R. M.; Schuhmann, W.
2016. ChemPlusChem, 81 (1), 2. doi:10.1002/cplu.201600014
Metal-Support Interactions of Platinum Nanoparticles Decorated N-Doped Carbon Nanofibers for the Oxygen Reduction Reaction.
Melke, J.; Peter, B.; Habereder, A.; Ziegler, J.; Fasel, C.; Nefedov, A.; Sezen, H.; Wöll, C.; Ehrenberg, H.; Roth, C.
2016. ACS Applied Materials and Interfaces, 8 (1), 82–90. doi:10.1021/acsami.5b06225
Dispatch of a wind farm with a battery storage.
Ried, S.; Reuter-Oppermann, M.; Jochem, P.; Fichtner, W.
2016. Operations Research Proceedings 2014: Selected Papers of the Annual International Conference of the German Operations Research Society (GOR), RWTH Aachen University, Germany, September 2-5, 2014, 473–479, Springer, Cham. doi:10.1007/978-3-319-28697-6_66
Identifying the redox activity of cation-disordered Li-Fe-V-Ti oxide cathodes for Li-ion batteries.
Chen, R.; Witte, R.; Heinzmann, R.; Ren, S.; Mangold, S.; Hahn, H.; Hempelmann, R.; Ehrenberg, H.; Indris, S.
2016. Physical chemistry, chemical physics, 18 (11), 7695–7701. doi:10.1039/c6cp00131a
Investigation of the electrochemically active surface area and lithium diffusion in graphite anodes by a novel OsO₄ staining method.
Pfaffmann, L.; Birkenmaier, C.; Müller, M.; Bauer, W.; Mitsch, T.; Feinauer, J.; Krämer, Y.; Scheiba, F.; Hintennach, A.; Schleid, T.; Schmidt, V.; Ehrenberg, H.
2016. Journal of Power Sources, 307, 762–771. doi:10.1016/j.jpowsour.2015.12.085
Investigation of Binary Mixtures Containing 1-Ethyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)azanide and Ethylene Carbonate.
Hofmann, A.; Migeot, M.; Hanemann, T.
2016. Journal of Chemical and Engineering Data, 61 (1), 114–123. doi:10.1021/acs.jced.5b00338
Apple-Biowaste-Derived Hard Carbon as a Powerful Anode Material for Na-Ion Batteries.
Wu, L.; Buchholz, D.; Vaalma, C.; Giffin, G. A.; Passerini, S.
2016. ChemElectroChem, 3 (2), 292–298. doi:10.1002/celc.201500437
Interaction of the ionic liquid [BMP][TFSA] with rutile TiO2(110) and coadsorbed lithium.
Uhl, B.; Hekmatfar, M.; Buchner, F.; Behm, R. J.
2016. Physical Chemistry Chemical Physics, 18 (9), 6618–6636. doi:10.1039/c5cp07433a
Extraordinary Performance of Carbon-Coated Anatase TiO2 as Sodium-Ion Anode.
Tahir, M. N.; Oschmann, B.; Buchholz, D.; Dou, X.; Lieberwirth, I.; Panthöfer, M.; Tremel, W.; Zentel, R.; Passerini, S.
2016. Advanced energy materials, 6 (4), 1501489/1–9. doi:10.1002/aenm.201501489
Local Structure and Stability of SEI in Graphite and ZFO Electrodes Probed by As K-Edge Absorption Spectroscopy.
Rezvani, S. J.; Ciambezi, M.; Gunnella, R.; Minicucci, M.; Munioz, M. A.; Nobili, F.; Pasqualini, M.; Passerini, S.; Schreiner, C.; Trapananti, A.; Witkowska, A.; Di Cicco, A.
2016. Journal of Physical Chemistry C, 120 (8), 4287–4295. doi:10.1021/acs.jpcc.5b11798
Layered Na-Ion Cathodes with Outstanding Performance Resulting from the Synergetic Effect of Mixed P- and O-Type Phases.
Keller, M.; Buchholz, D.; Passerini, S.
2016. Advanced Energy Materials, 6 (3), 1501555/1–11. doi:10.1002/aenm.201501555
VOCl as a Cathode for Rechargeable Chloride Ion Batteries.
Gao, P.; Reddy, M. A.; Mu, X.; Diemant, T.; Zhang, L.; Zhao-Karger, Z.; Chakravadhanula, V. S. K.; Clemens, O.; Behm, R. J.; Fichtner, M.
2016. Angewandte Chemie / International edition, 55 (13), 4285–4290. doi:10.1002/anie.201509564
In situ Raman spectroscopy of carbon-coated ZnFe2O4 anode material in Li-ion batteries - Investigation of SEI growth.
Cabo-Fernandez, L.; Mueller, F.; Passerini, S.; Hardwick, L. J.
2016. Chemical Communications, 52 (20), 3970–3973. doi:10.1039/c5cc09350c
Effect of Internal Current Flow during the Sintering of Zirconium Diboride by Field Assisted Sintering Technology.
Gonzalez-Julian, J.; Jähnert, K.; Speer, K.; Liu, L.; Räthel, J.; Knapp, M.; Ehrenberg, H.; Bram, M.; Guillon, O.
2016. Journal of the American Ceramic Society, 99 (1), 35–42. doi:10.1111/jace.13931
Laser-induced breakdown spectroscopy of laser-structured Li(NiMnCo)O₂ electrodes for lithium-ion batteries.
Smyrek, P.; Pröll, J.; Seifert, H. J.; Pfleging, W.
2016. Journal of the Electrochemical Society, 163 (2), A19-A26. doi:10.1149/2.0981514jes
Synthesis, Rietveld refinements, Infrared and Raman spectroscopy studies of the sodium diphosphate NaCryFe1-yP2O7 (0 ≤ y ≤ 1).
Bih, H.; Saadoune, I.; Bih, L.; Mansori, M.; Toufik, H.; Fuess, H.; Ehrenberg, H.
2016. Journal of Molecular Structure, 1103, 103–109. doi:10.1016/j.molstruc.2015.09.014
Modeling crack growth during Li extraction in storage particles using a fracture phase field approach.
Klinsmann, M.; Rosato, D.; Kamlah, M.; McMeeking, R. M.
2016. Journal of the Electrochemical Society, 163 (2), A102-A118. doi:10.1149/2.0281602jes
Novel strategies towards the realization of larger lithium sulfur/silicon pouch cells.
Weinberger, M.; Wohlfahrt-Mehrens, M.
2016. Electrochimica Acta, 191, 124–132. doi:10.1016/j.electacta.2015.11.150
Performance study of magnesium-sulfur battery using a graphene based sulfur composite cathode electrode and a non-nucleophilic Mg electrolyte.
Vinayan, B. P.; Zhao-Karger, Z.; Diemant, T.; Chakravadhanula, V. S. K.; Schwarzburger, N. I.; Cambaz, M. A.; Behm, R. J.; Kübel, C.; Fichtner, M.
2016. Nanoscale, 8 (6), 3296–3306. doi:10.1039/c5nr04383b
Immersion measurements of potential of zero total charge (pztc) of Au(100) in an ionic liquid.
Müller, C.; Vesztergom, S.; Pajkossy, T.; Jacob, T.
2016. Electrochimica Acta, 188, 512–515. doi:10.1016/j.electacta.2015.11.141
Eco-Friendly Energy Storage System: Seawater and Ionic Liquid Electrolyte.
Kim, J.-K.; Mueller, F.; Kim, H.; Jeong, S.; Park, J.-S.; Passerini, S.; Kim, Y.
2016. ChemSusChem, 9 (1), 42–49. doi:10.1002/cssc.201501328
A novel high-throughput setup for in situ powder diffraction on coin cell batteries.
Herklotz, M.; Weiß, J.; Ahrens, E.; Yavuz, M.; Mereacre, L.; Kiziltas-Yavuz, N.; Dräger, C.; Ehrenberg, H.; Eckert, J.; Fauth, F.; Giebeler, L.; Knapp, M.
2016. Journal of Applied Crystallography, 49, 340–345. doi:10.1107/S1600576715022165
Characteristics of an ionic liquid electrolyte for sodium-ion batteries.
Hasa, I.; Passerini, S.; Hassoun, J.
2016. Journal of Power Sources, 303, 203–207. doi:10.1016/j.jpowsour.2015.10.100
A sodium-ion battery exploiting layered oxide cathode, graphite anode and glyme-based electrolyte.
Hasa, I.; Dou, X.; Buchholz, D.; Shao-Horn, Y.; Hassoun, J.; Passerini, S.; Scrosati, B.
2016. Journal of Power Sources, 310, 26–31. doi:10.1016/j.jpowsour.2016.01.082
Ionic liquids as tailored media for the synthesis and processing of energy conversion materials.
Eshetu, G. G.; Armand, M.; Ohno, H.; Scrosati, B.; Passerini, S.
2016. Energy and Environmental Science, 9 (1), 49–61. doi:10.1039/c5ee02284c
Comprehensive Insights into the Reactivity of Electrolytes Based on Sodium Ions.
Eshetu, G. G.; Grugeon, S.; Kim, H.; Jeong, S.; Wu, L.; Gachot, G.; Laruelle, S.; Armand, M.; Passerini, S.
2016. ChemSusChem, 9 (5), 462–471. doi:10.1002/cssc.201501605
Fluoride ion batteries: Theoretical performance, safety, toxicity, and a combinatorial screening of new electrodes.
Gschwind, F.; Rodriguez-Garcia, G.; Sandbeck, D. J. S.; Gross, A.; Weil, M.; Fichtner, M.; Hörmann, N.
2016. Journal of Fluorine Chemistry, 182, 76–90. doi:10.1016/j.jfluchem.2015.12.002
Characterization of a reversible, low-polarization sodium-oxygen battery.
Elia, G. A.; Hasa, I.; Hassoun, J.
2016. Electrochimica Acta, 191, 516–520. doi:10.1016/j.electacta.2016.01.062
Mechanical Milling Assisted Synthesis and Electrochemical Performance of High Capacity LiFeBO₃ for Lithium Batteries.
Cambaz, M. A.; Anji Reddy, M.; Vinayan, B. P.; Witte, R.; Pohl, A.; Mu, X.; Chakravadhanula, V. S. K.; Kübel, C.; Fichtner, M.
2016. ACS applied materials & interfaces, 8 (3), 2166–2172. doi:10.1021/acsami.5b10747
Interaction of a Self-Assembled Ionic Liquid Layer with Graphite(0001): A Combined Experimental and Theoretical Study.
Buchner, F.; Forster-Tonigold, K.; Bozorgchenani, M.; Gross, A.; Behm, R. J.
2016. Journal of Physical Chemistry Letters, 7 (2), 226–233. doi:10.1021/acs.jpclett.5b02449
Titanium deposition from ionic liquids-appropriate choice of electrolyte and precursor.
Berger, C. A.; Arkhipova, M.; Farkas, A.; Maas, G.; Jacob, T.
2016. Physical chemistry, chemical physics, 18 (6), 4961–4965. doi:10.1039/c5cp07152f
2015
On the Necessity and Nature of E-Mobility Services : Towards a Service Description Framework.
Stryja, C.; Fromm, H.; Ried, S.; Jochem, P.; Fichtner, W.
2015. Exploring Services Science, IESS 2015, 6th International Conference, Porto, Portugal, 4th - 6th February 2015 Proceedings. Ed.: H. Nóvoa, 109–122, Springer, Cham. doi:10.1007/978-3-319-14980-6_9
Profitability of photovoltaic battery systems considering temporal resolution.
Ried, S.; Jochem, P.; Fichtner, W.
2015. 2015 12th International Conference on the European Energy Market (EEM), Lisbon, Portugal, 19–22 May 2015, 1–5, IEEE, Piscataway (NJ). doi:10.1109/EEM.2015.7216632
Crystalline complexes of Pyr12O1TFSI-based ionic liquid electrolytes.
Giffin, G. A.; Tannert, J.; Jeong, S.; Uhl, W.; Passerini, S.
2015. The journal of physical chemistry <Washington, DC> / C, 119 (11), 5878–5887. doi:10.1021/jp512895h
V2O5 electrodes with extended cycling ability and improved rate performance using polyacrylic acid as binder.
Moretti, A.; Maroni, F.; Nobili, F.; Passerini, S.
2015. Journal of power sources, 293, 1068–1072. doi:10.1016/j.jpowsour.2014.09.150
Nanoscale Conversion Materials for Electrochemical Energy Storage.
Fichtner, M.
2015. Nanotechnology in Advanced Electrochemical Power Sources. Ed.: S. Prabaharan, 51–88, Pan Stanford Publ., Singapore
Influence of environmental conditions on the sensing accuracy of Li-Ion battery management systems with passive charge balancing.
Blank, T.; Lipps, C.; Ott, W.; Hoffmann, P.; Weber, M.
2015. 17th European Conference on Power Electronics and Applications, EPE-ECCE Europe 2015, Geneva, Switzerland, 1–9, IEEE. doi:10.1109/EPE.2015.7309264
Formation of nanostructures by femtosecond laser processing.
Zheng, Y.; Proll, J.; Seifert, H. J.; Pfleging, W.
2015. 5th International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale, 3M-NANO 2015, Changchun, China, 329–333, IEEE, Piscataway (NJ). doi:10.1109/3M-NANO.2015.7425522
Phosphate based ceramics as solid electrolyte for high temperature lithium ion batteries.
Cui, Y.; Rohde, M.; Mahmoud, M. M.; Ziebert, C.; Seifert, H. J.
2015. Energy, Science and Technology 2015. The energy conference for scientists and researchers. Book of Abstracts, EST, Energy Science Technology, International Conference & Exhibition, 20-22 May 2015, Karlsruhe, Germany, 335, KIT, Karlsruhe
CEC and 7Li MAS NMR study of interlayer Li+ in the montmorillonite beidellite series at room temperature and after heating.
Steudel, A.; Heinzmann, R.; Indris, S.; Emmerich, K.
2015. Clays and clay minerals, 63 (5), 337–350. doi:10.1346/CCMN.2015.0630501
Cyclic electric field response of morphotropic Bi1/2Na1/2TiO₃-BaTiO₃ piezoceramics.
Hinterstein, M.; Schmitt, L. A.; Hoelzel, M.; Jo, W.; Rödel, J.; Kleebe, H.-J.; Hoffman, M.
2015. Applied Physics Letters, 106 (22), 222904. doi:10.1063/1.4922145
Electric-field-induced strain contributions in morphotropic phase boundary composition of (Bi1/2Na1/2)TiO₃-BaTiO₃ during poling.
Khansur, N. H.; Hinterstein, M.; Wang, Z.; Groh, C.; Jo, W.; Daniels, J. E.
2015. Applied Physics Letters, 107 (24), 242902. doi:10.1063/1.4937470
Electrospun Carbon Nanofibers as Alternative Electrode Materials for Vanadium Redox Flow Batteries.
Fetyan, A.; Derr, I.; Kayarkatte, M. K.; Langner, J.; Bernsmeier, D.; Kraehnert, R.; Roth, C.
2015. ChemElectroChem, 2 (12), 2055–2060. doi:10.1002/celc.201500284
Die Kerze - Ein physikalisch-chemisches Wunderwerk...
Luerßen, B.; Peppler, K.; Ries, M.; Janek, J.; Over, H.
2015. Chemie in Unserer Zeit, 49 (6), 362–370. doi:10.1002/ciuz.201500687
Simulation and modelling of the solid electrolyte interphase with varying porosity.
Single, F.; Karaca, E.; Horstmann, B.; Latz, A.
2015. ECS Transactions, 69 (1), 129–131. doi:10.1149/06901.0129ecst
Lifetime and performance prediction of SOFC anodes operated with trace amounts of hydrogen sulfide.
Riegraf, M.; Schiller, G.; Costa, R.; Friedrich, K. A.; Latz, A.; Yurkiv, V.
2015. ECS Transactions, 68 (1), 1373–1382. doi:10.1149/06801.1373ecst
Submicron-sized silicon oxycarbide spheres as anodes for alkali ion batteries.
Weinberger, M.; Pfeifer, C.; Schindler, S.; Diemant, T.; Behm, R. J.; Wohlfahrt-Mehrens, M.
2015. Journal of Materials Chemistry A, 3 (47), 23707–23715. doi:10.1039/c5ta06277b
Iron encapsulated nitrogen and sulfur co-doped few layer graphene as a non-precious ORR catalyst for PEMFC application.
Vinayan, B. P.; Diemant, T.; Behm, R. J.; Ramaprabhu, S.
2015. RSC Advances, 5 (81), 66494–66501. doi:10.1039/c5ra09030j
Non-aqueous semi-solid flow battery based on Na-ion chemistry. P2-type NaₓNi₀̣₂₂Co₀̣₁₁Mn₀̣₆₆O₂-NaTi₂(PO₄)₃.
Ventosa, E.; Buchholz, D.; Klink, S.; Flox, C.; Chagas, L. G.; Vaalma, C.; Schuhmann, W.; Passerini, S.; Morante, J. R.
2015. Chemical Communications, 51 (34), 7298–7301. doi:10.1039/c4cc09597a
Platinum and platinum-iron alloy nanoparticles dispersed nitrogen-doped graphene as high performance room temperature hydrogen sensor.
Sripada, R.; Parambath, V. B.; Baro, M.; Nair, S. P. N.; Sundara, R.
2015. International Journal of Hydrogen Energy, 40 (32), 10346–10353. doi:10.1016/j.ijhydene.2015.06.018
Thick electrodes for high energy lithium ion batteries.
Singh, M.; Kaiser, J.; Hahn, H.
2015. Journal of the Electrochemical Society, 162 (7), A1196-A1201. doi:10.1149/2.0401507jes
Homogeneity of lithium distribution in cylinder-type Li-ion batteries.
Senyshyn, A.; Mühlbauer, M. J.; Dolotko, O.; Hofmann, M.; Ehrenberg, H.
2015. Scientific reports, 5, Art.Nr.: 18380. doi:10.1038/srep18380
Activated carbon, carbon blacks and graphene based nanoplatelets as active materials for electrochemical double layer capacitors: A comparative study.
Schütter, C.; Ramirez-Castro, C.; Oljaca, M.; Passerini, S.; Winter, M.; Balducci, A.
2015. Journal of the Electrochemical Society, 162 (1), A44-A51. doi:10.1149/2.0381501jes
The influence of sulfur formation on performance and reforming chemistry of SOFC anodes operating on methane containing fuel.
Riegraf, M.; Yurkiv, V.; Schiller, G.; Costa, R.; Latz, A.; Friedricha, K. A.
2015. Journal of the Electrochemical Society, 162 (12), F1324-F1332. doi:10.1149/2.0291512jes
Elementary kinetic numerical simulation of Ni/YSZ SOFC anode performance considering sulfur poisoning.
Riegraf, M.; Schiller, G.; Costa, R.; Friedrich, K. A.; Latz, A.; Yurkiv, V.
2015. Journal of the Electrochemical Society, 162 (1), F65-F75. doi:10.1149/2.0471501jes
Aging of Cations of Ionic Liquids Monitored by Ion Chromatography hyphenated to an Electrospray Ionization Mass Spectrometer.
Pyschik, M.; Schultz, C.; Passerini, S.; Winter, M.; Nowak, S.
2015. Electrochimica Acta, 176, 1143–1152. doi:10.1016/j.electacta.2015.07.168
Structure of palladium nanoparticles under oxidative conditions.
Popa, C.; Zhu, T.; Tranca, I.; Kaghazchi, P.; Jacob, T.; Hensen, E. J. M.
2015. Physical Chemistry Chemical Physics, 17 (3), 2268–2273. doi:10.1039/c4cp01761g
Nitrile functionalized silyl ether with dissolved LiTFSI as new electrolyte solvent for lithium-ion batteries.
Pohl, B.; Grünebaum, M.; Drews, M.; Passerini, S.; Winter, M.; Wiemhöfer, H. D.
2015. Electrochimica Acta, 180, 795–800. doi:10.1016/j.electacta.2015.09.001
A review of nanofibrous structures in lithium ion batteries.
Pampal, E. S.; Stojanovska, E.; Simon, B.; Kilic, A.
2015. Journal of Power Sources, 300, 199–215. doi:10.1016/j.jpowsour.2015.09.059
Interplay between solid state transitions, conductivity mechanisms, and electrical relaxations in a [PVBTMA] [Br]-b-PMB diblock copolymer membrane for electrochemical applications.
Noto, V. D.; Giffin, G. A.; Vezzu, K.; Nawn, G.; Bertasi, F.; Tsai, T.-H.; Maes, A. M.; Seifert, S.; Coughlin, E. B.; Herring, A. M.
2015. Physical Chemistry Chemical Physics, 17 (46), 31125–31139. doi:10.1039/c5cp05545h
Exploring the low voltage behavior of V₂O₅ aerogel as intercalation host for sodium ion battery.
Moretti, A.; Secchiaroli, M.; Buchholz, D.; Giuli, G.; Marassi, R.; Passerini, S.
2015. Journal of the Electrochemical Society, 162 (14), A2723-A2728. doi:10.1149/2.0711514jes
Synthesis and characterization of carbon coated sponge-like tin oxide (SnOₓ) films and their application as electrode materials in lithium-ion batteries.
Mohri, N.; Oschmann, B.; Laszczynski, N.; Mueller, F.; Zamory, J. von; Tahir, M. N.; Passerini, S.; Zentel, R.; Tremel, W.
2015. Journal of Materials Chemistry A, 4 (2), 612–619. doi:10.1039/c5ta06546a
The interface between Au(1 0 0) and 1-butyl-3-methyl-imidazolium-bis(trifluoromethylsulfonyl)imide.
Müller, C.; Vesztergom, S.; Pajkossy, T.; Jacob, T.
2015. Journal of Electroanalytical Chemistry, 737 (SI), 218–225. doi:10.1016/j.jelechem.2014.06.010
The interface between HOPG and 1-butyl-3-methyl-imidazolium hexafluorophosphate.
Müller, C.; Nemeth, K.; Vesztergom, S.; Pajkossy, T.; Jacob, T.
2015. Physical Chemistry Chemical Physics, 18 (2), 916–925. doi:10.1039/c5cp05406k
Multiscale modeling of lithium ion batteries: Thermal aspects.
Latz, A.; Zausch, J.
2015. Beilstein Journal of Nanotechnology, 6 (1), 987–1007. doi:10.3762/bjnano.6.102
Magnesium sulphide as anode material for lithium-ion batteries.
Helen, M.; Fichtner, M.
2015. Electrochimica acta, 169, 180–185. doi:10.1016/j.electacta.2015.04.086
A comparative study of layered transition metal oxide cathodes for application in sodium-ion battery.
Hasa, I.; Buchholz, D.; Passerini, S.; Hassoun, J.
2015. ACS Applied Materials and Interfaces, 7 (9), 5206–5212. doi:10.1021/am5080437
Stabilization of the γ-Sn phase in tin nanoparticles and nanowires.
Hörmann, N. G.; Gross, A.; Rohrer, J.; Kaghazchi, P.
2015. Applied physics letters, 107 (12), Art.Nr. 123101. doi:10.1063/1.4931353
Vanadium oxychloride as electrode material for sodium ion batteries.
Gao, P.; Wall, C.; Zhang, L.; Reddy, M. A.; Fichtner, M.
2015. Electrochemistry communications, 60, 180–184. doi:10.1016/j.elecom.2015.09.008
Interphase Evolution of a Lithium-Ion/Oxygen Battery.
Elia, G. A.; Bresser, D.; Reiter, J.; Oberhumer, P.; Sun, Y.-K.; Scrosati, B.; Passerini, S.; Hassoun, J.
2015. ACS Applied Materials and Interfaces, 7 (40), 22638–22643. doi:10.1021/acsami.5b07414
QM/MM description of periodic systems.
Doll, K.; Jacob, T.
2015. Journal of theoretical and computational chemistry, 14 (7), Art.Nr. 1550054. doi:10.1142/S0219633615500546
SEI Growth and Depth Profiling on ZFO Electrodes by Soft X-Ray Absorption Spectroscopy.
Di Cicco, A.; Giglia, A.; Gunnella, R.; Koch, S. L.; Müller, F.; Nobili, F.; Pasqualini, M.; Passerini, S.; Tossici, R.; Witkowska, A.
2015. Advanced energy materials, 5 (18), Art.Nr. 1500642. doi:10.1002/aenm.201500642
Modeling of nano-structured cathodes for improved lithium-sulfur batteries.
Danner, T.; Zhu, G.; Hofmann, A. F.; Latz, A.
2015. Electrochimica Acta, 184, 124–133. doi:10.1016/j.electacta.2015.09.143
Multiple points of view of heteronuclear NOE: Long range vs short range contacts in pyrrolidinium based ionic liquids in the presence of Li salts.
Castiglione, F.; Appetecchi, G. B.; Passerini, S.; Panzeri, W.; Indelicato, S.; Mele, A.
2015. Journal of Molecular Liquids, 210 (SI: Part B), 215–222. doi:10.1016/j.molliq.2015.05.036
High temperature stable separator for lithium batteries based on SiO² and hydroxypropyl guar gum.
Carvalho, D. V.; Loeffler, N.; Kim, G.-T.; Passerini, S.
2015. Membranes, 5 (4), 632–645. doi:10.3390/membranes5040632
X-ray Absorption Spectroscopy Investigation of Lithium-Rich, Cobalt-Poor Layered-Oxide Cathode Material with High Capacity.
Buchholz, D.; Li, J.; Passerini, S.; Aquilanti, G.; Wang, D.; Giorgetti, M.
2015. ChemElectroChem, 2 (1), 85–97. doi:10.1002/celc.201402324
Transforming anatase TiO₂ nanorods into ultrafine nanoparticles for advanced electrochemical performance.
Bresser, D.; Kim, G.-T.; Binetti, E.; Striccoli, M.; Comparelli, R.; Seidel, S.; Ozkaya, D.; Copley, M.; Bishop, P.; Paillard, E.; Passerini, S.
2015. Journal of Power Sources, 294 (39), 406–413. doi:10.1016/j.jpowsour.2015.06.089
Thermodynamically Consistent Model for Space-Charge-Layer Formation in a Solid Electrolyte.
Braun, S.; Yada, C.; Latz, A.
2015. Journal of Physical Chemistry C, 119 (39), 22281–22288. doi:10.1021/acs.jpcc.5b02679
Fluorinated Carbamates as Suitable Solvents for LiTFSI-Based Lithium-Ion Electrolytes: Physicochemical Properties and Electrochemical Characterization.
Bolloli, M.; Kalhoff, J.; Alloin, F.; Bresser, D.; Phung Le, M. L.; Langlois, B.; Passerini, S.; Sanchez, J.-Y.
2015. Journal of Physical Chemistry C, 119 (39), 22404–22414. doi:10.1021/acs.jpcc.5b07514
Scaling up "Nano" Li₄Ti₅O₁₂ for High-Power Lithium-Ion Anodes Using Large Scale Flame Spray Pyrolysis.
Birrozzi, A.; Copley, M.; Zamory, J. von; Pasqualini, M.; Calcaterra, S.; Nobili, F.; Di Cicco, A.; Rajantie, H.; Briceno, M.; Bilbé, E.; Cabo-Fernandez, L.; Hardwick, L. J.; Bresser, D.; Passerinia, S.
2015. Journal of the Electrochemical Society, 162 (12), A2331-A2338. doi:10.1149/2.0711512jes
Mechanical stresses and morphology evolution in germanium thin film electrodes during lithiation and delithiation.
Al-Obeidi, A.; Kramer, D.; Thompson, C. V.; Mönig, R.
2015. Journal of Power Sources, 297, 472–480. doi:10.1016/j.jpowsour.2015.06.155
Electrochemical characterization of monoclinic and orthorhombic Li₃CrF₆ as positive electrodes in lithium-ion batteries synthesized by a sol-gel process with environmentally benign chemicals.
Lieser, G.; Winkler, V.; Gesswein, H.; de Biasi, L.; Glatthaar, S.; Hoffmann, M. J.; Ehrenberg, H.; Binder, J. R.
2015. Journal of power sources, 294, 444–451. doi:10.1016/j.jpowsour.2015.06.036
Thermal expansion of polycrystalline gallium nitride: An X-ray diffraction study.
Minikayev, R.; Paszkowicz, W.; Piszora, P.; Knapp, M.; Bähtz, C.; Podsiadlo, S.
2015. X-ray spectrometry, 44 (5), 382–388. doi:10.1002/xrs.2644
Amendment of the Li-Bi phase diagram crystal and electronic structure of Li₂Bi.
Pavlyuk, V.; Sozansky, M.; Dmytriv, G.; Indris, S.; Ehrenberg, H.
2015. Journal of phase equilibria and diffusion, 36 (6), 544–553. doi:10.1007/s11669-015-0409-z
Structural and magnetic characterization of single-phase sponge-like bulk a’’-Fe₁₆N₂.
Widenmeyer, M.; Shlyk, L.; Senyshyn, A.; Mönig, R.; Niewa, R.
2015. Zeitschrift für anorganische und allgemeine Chemie, 641, 348–354. doi:10.1002/zaac.201500013
Development and test of a neutron imaging setup at the PGAA instrument at FRM II.
Söllradl, S.; Mühlbauer, M. J.; Kudejova, P.; Türler, A.
2015. Physics procedia, 69, 130–137. doi:10.1016/j.phpro.2015.07.019
Kupfer-Dickfilmstrukturen für Silizium-Karbid Leistungsmodule mit hoher Integrationsdichte.
Meisser, M.; Schmenger, M.; Leyrer, B.; Martin, B.; Blank, T.
2015. MikroSystemTechnik Kongress 2015, Karlsruhe, 26.-28.Oktober 2015, 653–655, VDE_Verlag, Berlin
Highly integrated power modules based on copper thick-film-on-DCB for high frequency operation of SiC semiconductors - Design and manufacture.
Schmenger, M.; Meisser, M.; Hamilton, D.; Leyrer, B.; Bernd, M.; Mawby, P.; Blank, T.
2015. 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe), Geneve, CH, September 8-10, 2015, Article nr 7309050, IEEE, Piscataway, N.J. doi:10.1109/EPE.2015.7309050
Parasitics in power electronic modules: How parasitic inductance influences switching and how it can be minimized.
Meisser, M.; Schmenger, M.; Blank, T.
2015. International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (PCIM Europe 2015), Nürnberg, May 19-21, 2015, 758–765, VDE-Verlag, Berlin
Unraveling the degradation process of LiNi₀̣₈Co₀̣₁₅Al₀̣₀₅O₂ electrodes in commercial lithium ion batteries by electronic structure investigations.
Kleiner, K.; Melke, J.; Merz, M.; Jakes, P.; Nagel, P.; Schuppler, S.; Liebau, V.; Ehrenberg, H.
2015. ACS applied materials & interfaces, 7, 19589–19600. doi:10.1021/acsami.5b03191
Interplay of strain mechanisms in morphotropic piezoceramics.
Hinterstein, M.; Hoelzel, M.; Rouquette, J.; Haines, J.; Glaum, J.; Kungl, H.; Hoffmann, M.
2015. Acta materialia, 94, 319–327. doi:10.1016/j.actamat.2015.04.017
New experimental heat capacity and enthalpy of formation of lithium cobalt oxide.
Gotcu-Freis, P.; Cupid, D. M.; Rohde, M.; Seifert, H. J.
2015. The journal of chemical thermodynamics, 84, 118–127. doi:10.1016/j.jct.2014.12.007
Microwave rapid conversion of sol gel-derived hydroxyapatite into β-tricalcium phosphate.
Hassan, M. N.; Mahmoud, M. M.; Abd El-Fattah, A.; Kandil, S.
2015. Journal of sol gel science and technology, 76 (1), 74–81. doi:10.1007/s10971-015-3753-x
Femtosecond laser structuring of novel electrodes for 3D fuel cell design with increased reaction surface.
Faubert, P.; Müller, C.; Reinecke, H.; Smyrek, P.; Pröll, J.; Pfleging, W.
2015. The Development of Oxygen Reduction Reaction (ORR) and Oxygen Evolution Reaction (OER) Materials in Energy Storage and Conversion Systems : Proceedings of Symposium K of theMaterials Research Society Spring Meeting 2015, San Francisco, CA, April 6-10, 2015. Ed.: E. Roduner, 7–13, MRS, Warrendale, PA. doi:10.1557/opl.2015.507
Manufacturing of advanced Li(NiMnCo)O₂ electrodes for lithium-ion batteries.
Smyrek, P.; Pröll, J.; Rakebrandt, J. H.; Seifert, H. J.; Pfleging, W.
2015. Laser-based Micro- and Nanoprocessing IX : Proceedings of SPIE Photonics West, San Francisco, Calif., February 7-12, 2015. Ed.: U. Klotzbach, Paper 93511D, SPIE, Bellingham, WA. doi:10.1117/12.2078160
Surface micro-structuring of intercalation cathode materials for lithium-ion batteries a study of laser-assisted cone formation.
Pfleging, W.; Smyrek, P.; Hund, J.; Bergfeldt, T.; Pröll, J.
2015. Laser-based Micro- and Nanoprocessing IX : Proceedings of SPIE Photonics West, San Francisco, Calif., February 7-12, 2015. Ed.: U. Klotzbach, Article no 93511E, SPIE, Bellingham, WA. doi:10.1117/12.2077763
Femtosecond laser patterning of lithium-ion battery separator materials: impact on liquid electrolyte wetting and cell performance.
Pröll, J.; Schmitz, B.; Niemöller, A.; Robertz, B.; Schäfer, M.; Torge, M.; Smyrek, P.; Seifert, H. J.; Pfleging, W.
2015. Laser-based Micro- and Nanoprocessing IX : Proceedings of SPIE Photonics West, San Francisco, Calif., February 7-12, 2015. Ed.: U. Klotzbach, Article no 93511F, SPIE, Bellingham, WA. doi:10.1117/12.2079018
Electrochemical and kinetic studies of ultrafast laser structured LiFePO₄ electrodes.
Mangang, M.; Gotcu-Freis, P.; Seifert, H. J.; Pfleging, W.
2015. Laser-based Micro- and Nanoprocessing IX : Proceedings of SPIE Photonics West, San Francisco, Calif., February 7-12, 2015. Ed.: U. Klotzbach, Article no 93510K, SPIE, Bellingham, WA. doi:10.1117/12.2078900
Laser-assisted materials processing for the development and production of optimized lithium-ion batteries.
Pfleging, W.; Mangang, M.; Smyrek, P.; Pröll, J.
2015. Scientific Reports : Journal of the University of Applied Sciences Mittweida = Wissenschaftliche Berichte : wissenschaftliche Zeitschrift der Hochschule Mittweida (FH), (4), 1–4
Thermal behavior and electrochemical heat generation in a commercial 40 Ah lithium ion pouch cell.
Schuster, E.; Ziebert, C.; Melcher, A.; Rohde, M.; Seifert, H. J.
2015. Journal of power sources, 286, 580–589. doi:10.1016/j.jpowsour.2015.03.170
A polymerized C₆₀ coating enhancing interfacial stability at three-dimensional LiCoO₂ in high-potential regime.
Hudaya, C.; Halim, M.; Pröll, J.; Besser, H.; Choi, W.; Pfleging, W.; Seifert, H. J.; Lee, J. K.
2015. Journal of power sources, 298, 1–7. doi:10.1016/j.jpowsour.2015.08.044
Three-dimensional silicon/carbon core-shell electrode as an anode material for lithium-ion batteries.
Kin, J. S.; Pfleging, W.; Kohler, R.; Seifert, H. J.; Kim, T. Y.; Byun, D.; Jung, H. G.; Choi, W.; Lee, J. K.
2015. Journal of power sources, 279, 13–20. doi:10.1016/j.jpowsour.2014.12.041
X-ray total scattering investigation of AlSnO nanoparticles.
Yavuz, M.; Knapp, M.; Indris, S.; Hinterstein, M.; Donner, W.; Ehrenberg, H.
2015. Journal of applied crystallography, 48, 1699–1705. doi:10.1107/S1600576715017203
From WCl₆ to WCl₂: Properties of Intermediate Fe-W-Cl Phases.
Mos, A.; Castro, C.; Indris, S.; Ströbele, M.; Fink, R. F.; Meyer, H. J.
2015. Inorganic chemistry, 54 (20), 9826–9832. doi:10.1021/acs.inorgchem.5b01574
Thin-film calorimetry: Analytical tool for in-situ characterization of lithium ion batteries.
Wulfmeier, H.; Albrecht, D.; Fischer, J.; Ivanov, S.; Bund, A.; Ulrich, S.; Fritze, H.
2015. Connections / Athena papers, 162, A727-A736. doi:10.1149/2.0741504jes
Gas Evolution in Operating Lithium-Ion Batteries Studied in Situ by Neutron Imaging.
Michalak, B.; Sommer, H.; Mannes, D.; Kaestner, A.; Brezesinski, T.; Janek, J.
2015. Scientific Reports, 5, 15627. doi:10.1038/srep15627
Improved voltage and cycling for Li⁺ intercalation in high-capacity disordered oxyfluoride cathodes.
Ren, S.; Chen, R.; Maawad, E.; Dolotko, O.; Guda, A. A.; Shapovalov, V.; Wang, D.; Hahn, H.; Fichtner, M.
2015. Advanced science, 2 (10), 1500128/1–6. doi:10.1002/advs.201500128
Elucidation of the electrochemical reaction mechanism in MFe₂O₄ (M=Ni, Co) conversion-type negative electrode systems by using in situ X-ray absorption spectroscopy.
Balachandran, G.; Dixon, D.; Bramnik, N.; Bhaskar, A.; Yavuz, M.; Pfaffmann, L.; Scheiba, F.; Mangold, S.; Ehrenberg, H.
2015. ChemElectroChem, 2, 1510–1518. doi:10.1002/celc.201500197
Discharge and charge reaction paths in sodium-oxygen batteries: Does NaO2 form by direct electrochemical growth or by precipitation from solution?.
Hartmann, P.; Heinemann, M.; Bender, C. L.; Graf, K.; Baumann, R. P.; Adelhelm, P.; Heiliger, C.; Janek, J.
2015. The journal of physical chemistry <Washington, DC> / C, 119 (40), 22778–22786. doi:10.1021/acs.jpcc.5b06007
Influence of dry mixing and distribution of conductive additives in cathodes for lithium ion batteries.
Bauer, W.; Nötzel, D.; Wenzel, V.; Nirschl, H.
2015. Journal of power sources, 288, 359–367. doi:10.1016/j.jpowsour.2015.04.081
Investigation of the oxidative stability of Li-ion battery electrolytes using cathode materials.
Hofmann, A.; Werth, F.; Höweling, A.; Hanemann, T.
2015. ECS electrochemistry letters, 4 (12), A141-A144. doi:10.1149/2.0071512eel
Improved performance of VOₓ-coated Li-rich NMC electrodes.
Laszczynski, N.; Zamory, J. von; Kalhoff, J.; Loeffler, N.; Chakravadhanula, V. S. K.; Passerini, S.
2015. ChemElectroChem, 2, 1768–1773. doi:10.1002/celc.201500219
Hydrogen diffusion in La₁̣₅Nd₀̣₅MgNi₉ alloy electrodes of the Ni/MH battery.
Volodin, A. A.; Denys, R. V.; Tsirlina, G. A.; Tarasov, B. P.; Fichtner, M.; Yartys, V. A.
2015. Journal of Alloys and Compounds, 645 (Supplement 1), S288-S291. doi:10.1016/j.jallcom.2014.12.201
Nanocrystalline TiO₂(B) as anode material for sodium-ion batteries.
Wu, L.; Bresser, D.; Buchholz, D.; Passerini, S.
2015. Connections / Athena papers, 162, A3052-A3058. doi:10.1149/2.0091502jes
Precursor polymers for the carbon coating of Au @ ZnO multipods for application as active material in lithium-ion batteries.
Oschmann, B.; Tahir, M. N.; Mueller, F.; Bresser, D.; Lieberwirth, I.; Tremel, W.; Passerini, S.; Zentel, R.
2015. Macromolecular rapid communications, 36 (11), 1075–1082. doi:10.1002/marc.201400647
The role of graphene for electrochemical energy storage.
Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B.
2015. Nature materials, 14 (3), 271–279. doi:10.1038/nmat4170
Online continuous flow differential electrochemical mass spectrometry with a realistic battery setup for high-precision, long-term cycling tests.
Berkes, B. B.; Jozwiuk, A.; Vracar, M.; Sommer, H.; Brezesinski, T.; Janek, J.
2015. Analytical chemistry, 87, 5878–5883. doi:10.1021/acs.analchem.5b01237
Electropolymerization: Further insight into the formation of conducting polyindole thin films.
Berkes, B. B.; Bandarenka, A. S.; Inzelt, G.
2015. The journal of physical chemistry <Washington, DC> / C, 119, 1996–2003. doi:10.1021/jp512208s
High-performance lithium-sulfur batteries using Yolk-Shell Type sulfur-silica nanocomposite particles with raspberry-like morphology.
Lodi-Marzano, F.; Leuthner, S.; Sommer, H.; Brezesinski, T.; Janek, J.
2015. Energy Technology, 3 (8), 830–833. doi:10.1002/ente.201500090
Copper(II) perrhenate Cu(C₃H₇OH)₂(ReO₄)₂: Synthesis from isopropanol and CuReO₄ structure and properties.
Mikhailova, D.; Engel, J. M.; Schmidt, M.; Tsirlin, A. A.; Ehrenberg, H.
2015. Journal of solid state chemistry, 232, 264–269. doi:10.1016/j.jssc.2015.08.042
Ionic conductivity of mesostructured yttria-stabilized zirconia thin films with cubic pore symmetry - On the influence of water on the surface oxygen ion transport.
Elm, M. T.; Hofmann, J. D.; Suchomski, C.; Janek, J.; Brezesinski, T.
2015. ACS applied materials & interfaces, 7 (22), 11792–11801. doi:10.1021/acsami.5b01001
From lithium to sodium: Cell chemistry of room temperature sodium-air and sodium-sulfur batteries.
Adelhelm, P.; Hartmann, P.; Bender, C. L.; Busche, M.; Eufinger, C.; Janek, J.
2015. Beilstein journal of nanotechnology, 6, 1016–1055. doi:10.3762/bjnano.6.105
Semiconductor-metal transition induced by nanoscale stabilization.
Hörmann, N. G.; Gross, A.; Kaghazchi, P.
2015. Physical chemistry, chemical physics, 17 (8), 5569–5573. doi:10.1039/c4cp05619a
Homogeneous lithium electrodeposition with pyrrolidinium-based ionic liquid electrolytes.
Grande, L.; Von Zamory, J.; Koch, S. L.; Kalhoff, J.; Paillard, E.; Passerini, S.
2015. ACS applied materials & interfaces, 7 (10), 5950–5958. doi:10.1021/acsami.5b00209
Bottom-up formation of robust gold carbide.
Westenfelder, B.; Biskupek, J.; Meyer, J. C.; Kurasch, S.; Lin, X.; Scholz, F.; Gross, A.; Kaiser, U.
2015. Scientific reports, 5, Art.Nr.: 8891. doi:10.1038/srep08891
Equilibrium coverage of halides on metal electrodes.
Gossenberger, F.; Roman, T.; Groß, A.
2015. Surface science, 631, 17–22. doi:10.1016/j.susc.2014.01.021
Synthesis of a nitrogen rich (2D-1D) hybrid carbon nanomaterial using a MnO2 nanorod template for high performance Li-ion battery applications.
Vinayan, B. P.; Schwarzburger, N. I.; Fichtner, M.
2015. Journal of materials chemistry / A, 3, 6810–6818. doi:10.1039/C4TA05642F
The lithium/air battery: Still an emerging system or a practical reality?.
Grande, L.; Paillard, E.; Hassoun, J.; Park, J. B.; Lee, Y. J.; Sun, Y. K.; passerini, S.; Scrosati, B.
2015. Advanced materials, 27 (5), 784–800. doi:10.1002/adma.201403064
Some challenges in the first-principles modeling of structures and processes in electrochemical energy storage and transfer.
Hörmann, N. G.; Jäckle, M.; Gossenberger, F.; Roman, T.; Forster-Tonigold, K.; Naderian, M.; Sakong, S.; Groß, A.
2015. Journal of power sources, 275, 531–538. doi:10.1016/j.jpowsour.2014.10.198
Lithium plating in a commercial lithium-ion battery - A low-temperature aging study.
Petzl, M.; Kasper, M.; Danzer, M. A.
2015. Journal of power sources, 275, 799–807. doi:10.1016/j.jpowsour.2014.11.065
V₂O₅ aerogel as a versatile cathode material for lithium and sodium batteries.
Moretti, A.; Maroni, F.; Osada, I.; Nobili, F.; Passerini, S.
2015. ChemElectroChem, 2 (4), 529–537. doi:10.1002/celc.201402394
Ionic liquid mixtures with tunable physiochemical properties.
Moreno, J. S.; Jeremias, S.; Moretti, A.; Panero, S.; Passerini, S.; Scrosati, B.; Appetecchi, G. B.
2015. Electrochimica acta, 151, 599–608. doi:10.1016/j.electacta.2014.11.056
Carbon-coated anatase TiO₂ nanotubes for Li- and Na-ion anodes.
Bresser, D.; Oschmann, B.; Tahir, M. N.; Mueller, F.; Lieberwirth, I.; Tremel, W.; Zentel, R.; Passerini, S.
2015. Connections / Athena papers, 162 (2), A3013-A3020. doi:10.1149/2.0031502jes
Polyurethane binder für aqueous processing of Li-ion battery electrodes.
Loeffler, N.; Kopel, T.; Kim, G.-T.; Passerini, S.
2015. Journal of the Electrochemical Society, 162 (14), A2692-A2698. doi:10.1149/2.0641514jes
Fe-doped SnO₂ nanoparticles as new high capacity anode material for secondary lithium-ion batteries.
Müller, F.; Bresser, D.; Chakravadhanula, V. S. K.; Passerini, S.
2015. Journal of power sources, 299, 398–402. doi:10.1016/j.jpowsour.2015.08.018
Insights into the effect of iron and cobalt doping on the structure of nanosized ZnO.
Giuli, G.; Trapananti, A.; Müller, F.; Bresser, D.; Dacapito, F.; Passerini, S.
2015. Inorganic chemistry, 54 (19), 9393–9400. doi:10.1021/acs.inorgchem.5b00493
Study on the stability of Li₂MnSiO₄ cathode material in different electrolyte systems for Li-ion batteries.
Mancini, M.; Bekaert, E.; Diemant, T.; Marinaro, M.; De Biasi, L.; Behm, R. J.; Wohlfahrt-Mehrens, M.
2015. Electrochimica acta, 176, 679–688. doi:10.1016/j.electacta.2015.07.015
Interaction of ionic liquids with noble metal surfaces: Structure formation and stability of [OMIM][TFSA] and [EMIM][TFSA] on Au(111) and Ag(111).
Uhl, B.; Huang, H.; Alwast, D.; Buchner, F.; Behm, R. J.
2015. Physical chemistry, chemical physics, 17, 23816–23832. doi:10.1039/c5cp03787e
Reactive interaction of (sub-)monolayers and multilayers of the ionic liquid 1-Butyl-1-methylpyrrolidinium Bis(trifluoro-methylsulfonyl)imide with coadsorbed lithium on Cu(111).
Buchner, F.; Bozorgchenani, M.; Uhl, B.; Farkhondeh, H.; Bansmann, J.; Behm, R. J.
2015. The journal of physical chemistry <Washington, DC> / C, 119 (29), 16649–16659. doi:10.1021/acs.jpcc.5b03765
Single step tranformation of sulphur to Li₂S₂/Li₂S in Li-S batteries.
Helen, M.; Reddy, M. A.; Diemant, T.; Golla-Schindler, U.; Behm, R. J.; Kaiser, U.; Fichtner, M.
2015. Scientific reports, 5, 12146/1–12. doi:10.1038/srep12146
"Double-Salt" electrolytes for high voltage electrochemical double-layer capacitors.
Zhang, X.; Kühnel, R. S.; Passerini, S.; Balducci, A.
2015. Journal of solution chemistry, 44, 528–537. doi:10.1007/s10953-015-0298-0
Density functional theory screening of gas-treatment strategies for stabilization of high energy-density lithium metal anodes.
Koch, S. L.; Morgan, B. J.; Passerini, S.; Teobaldi, G.
2015. Journal of power sources, 296, 150–161. doi:10.1016/j.jpowsour.2015.07.027
Interaction of high flash point electrolytes and PE-based separators for Li-ion batteries.
Hofmann, A.; Kaufmann, C.; Müller, M.; Hanemann, T.
2015. International Journal of Molecular Sciences, 16 (9), 20258–20276. doi:10.3390/ijms160920258
Li+ intercalation in isostructural Li2VO3 and Li2VO2 with O2- and mixed O2-/F- anions.
Chen, R.; Ren, S.; Yavuz, M.; Guda, A. A.; Shapovalov, V.; Witter, R.; Fichtner, M.; Hahn, H.
2015. Physical Chemistry Chemical Physics, 17 (26), 17288–17295. doi:10.1039/c5cp02505b
Unravelling the mechanism of lithium insertion into and extraction from trirutile-type LiNiFeF₆ cathode material for Li-ion batteries.
de Biasi, L.; Lieser, G.; Rana, J.; Indris, S.; Dräger, C.; Glatthaar, S.; Mönig, R.; Ehrenberg, H.; Schumacher, G.; Binder, J. R.; Geßwein, H.
2015. CrystEngComm, 17 (32), 6163–6174. doi:10.1039/C5CE00989H
Enthalpy of formation of Li₁₋ₓMn₂₋ₓO₄ (0<x<0.1) spinel phases.
Cupid, D. M.; Reif, A.; Seifert, H. J.
2015. Thermochimica acta, 599, 35–41. doi:10.1016/j.tca.2014.11.003
Battery research as progress pacemaker.
Kortenbruck, C.; Gilles, R.; Senyshyn, A.; Zinth, V.; Hofmann, M.; Lüders, C. von; Dolotko, O.; Mühlbauer, M.; Seidlmayer, S.; Paul, N.
2015. Neutron news, 26 (1), 29–32. doi:10.1080/10448632.2015.996026
InnovatorInnen sind Helden.
Gutsch, A.
2015. Clement, W. [Hrsg.] Das Deutschland-Prinzip : was uns stark macht Berlin : Econ, 2015, 176–177
Lithium-Ionenbatterien? Ja, gerne - aber sicher!.
Timke, T.
2015. s+s Report, (2), 8–9
Transparenz ist gefragt.
Wollersheim, O.; Gutsch, A.
2015. PV Magazine, (2), 53–57
Betrieb stationärer Kleinspeichersysteme auf der Basis vonLithiumionenzellen.
Kaiser, J.; Brein, D.; Schlote-Holubek, K.; Schmid, A.; Endisch, J.; Radimersky, A.; Timke, T.
2015. Feuerwehr-Magazin - vfdb-Zeitschrift, 3, 150–157
High power, solvent-free electrochemical double layer capacitors based on pyrrolidinium dicyanamide ionic liquids.
Wolff, C.; Jeong, S.; Paillard, E.; Balducci, A.; Passerini, S.
2015. Journal of power sources, 293, 65–70. doi:10.1016/j.jpowsour.2015.05.065
Safer electrolytes for lithium-ion batteries: state of the art and perspectives.
Kalhoff, J.; Eshetu, G. G.; Bresser, D.; Passerini, S.
2015. ChemSusChem, 8 (13), 2154–2175. doi:10.1002/cssc.201500284
Synthesis and characterization of high-energy, high-power spinel-layered composite cathode materials for lithium-ion batteries.
Bhaskar, A.; Krueger, S.; Siozios, V.; Li, J.; Nowak, S.; Winter, M.
2015. Advanced energy materials, 5, 1401156/1–12. doi:10.1002/aenm.201401156
An assessment of the phase field formulation for crack growth.
Klinsmann, M.; Rosato, D.; Kamlah, M.; McMeeking, R. M.
2015. Computer methods in applied mechanics and engineering, 294, 313–330. doi:10.1016/j.cma.2015.06.009
Facile Synthesis of Carbon-Metal Fluoride Nanocomposites for Lithium Batteries.
Anji Reddy, M.; Fichtner, M.
2015. Energy, Science and Technology 2015. The energy conference for scientists and researchers. Book of Abstracts, EST, Energy Science Technology, International Conference & Exhibition, 20-22 May 2015, Karlsruhe, Germany, 53, KIT, Karlsruhe
A new tetragonal structure type for Li₂B₂C.
Pavlyuk, V.; Milashys, V.; Dmytriv, G.; Ehrenberg, H.
2015. Acta crystallographica / C, 71, 39–43. doi:10.1107/S2053229614025510
Electrolyte mixtures based on ethylene carbonate and dimethyl sulfone for Li-ion batteries with improved safety characteristics.
Hofmann, A.; Migeot, M.; Thißen, E.; Schulz, M.; Heinzmann, R.; Indris, S.; Bergfeldt, T.; Lei, B.; Ziebert, C.; Hanemann, T.
2015. ChemSusChem, 8, 1892–1900. doi:10.1002/cssc.201500263
Na₃V₂(PO₄)₃/C composite as the intercalation-type anode material for sodium-ion batteries with superior rate capability and long-cycle life.
Wang, D.; Chen, N.; Li, M.; Wang, C.; Ehrenberg, H.; Bie, X.; Wei, Y.; Chen, G.; Du, F.
2015. Journal of materials chemistry / A, 3, 8636–8642. doi:10.1039/C5TA00528K
Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches.
Hausbrand, R.; Cherkashinin, G.; Ehrenberg, H.; Gröting, M.; Albe, K.; Hess, C.; Jaegermann, W.
2015. Materials science and engineering / B, 192 (C), 3–25. doi:10.1016/j.mseb.2014.11.014
Performance improvement of magnesium sulfur batteries with modified non-nucleophilic electrolytes.
Zhao-Karger, Z.; Zhao, X.; Wang, D.; Diemant, T.; Behm, R. J.; Fichtner, M.
2015. Advanced energy materials, 5 (3), 1401155/1–9. doi:10.1002/aenm.201401155
Enhanced low-temperature lithium storage performance of multilayer graphene made through an improved ionic liquid-assisted synthesis.
Raccichini, R.; Varzi, A.; Chakravadhanula, V. S. K.; Kübel, C.; Balducci, A.; Passerini, S.
2015. Journal of power sources, 281, 318–325. doi:10.1016/j.jpowsour.2015.01.183
Lithium Insertion into Li₂MoO₄ : Reversible formation of (Li₃Mo)O₄ with a disordered rock-salt structure.
Mikhailova, D.; Voss, A.; Oswald, S.; Tsirlin, A. A.; Schmidt, M.; Senyshyn, A.; Eckert, J.; Ehrenberg, H.
2015. Chemistry of materials, 27 (12), 4485–4492. doi:10.1021/acs.chemmater.5b01633
Is there a universal reaction mechanism of Li insertion into oxidic spinels: a case study using MgFe₂O₄.
Permien, S.; Indris, S.; Scheuermann, M.; Schürmann, U.; Mereacre, V.; Powell, A. K.; Kienle, L.; Bensch, W.
2015. Journal of materials chemistry / A, 3, 1549–1561. doi:10.1039/C4TA05054A
Mechanism of the delithiation/Lithiation process in LiFe₀̣₄Mn₀̣₆PO₄: in situ and ex situ investigations on long-range and local structures.
Bezza, I.; Kaus, M.; Heinzmann, R.; Yavuz, M.; Knapp, M.; Mangold, S.; Doyle, S.; Grey, C. P.; Ehrenberg, H.; Indris, S.; Saadoune, I.
2015. The journal of physical chemistry <Washington, DC> / C, 119, 9016–9024. doi:10.1021/jp513032r
Band gap and electronic structure of MgSiN₂ determined using soft X-ray spectroscopy and density functional theory.
de Boer, T.; Boyko, T. D.; Braun, C.; Schnick, W.; Moewes, A.
2015. Physica Status Solidi (RRL) - Rapid Research Letters, 9 (4), 250–254. doi:10.1002/pssr.201510043
Combining high time and angular resolutions : time-resolved X-ray powder diffraction using a multi-channel analyser detector.
Choe, H.; Gorfman, S.; Hinterstein, M.; Ziolkowski, M.; Knapp, M.; Heidbrink, S.; Vogt, M.; Bednarcik, J.; Berghäuser, A.; Ehrenberg, H.; Pietsch, U.
2015. Journal of applied crystallography, 48, 970–974. doi:10.1107/S1600576715004598
High coercivity in large exchange-bias Co/CoO-MgO nano-granular films.
Ge, C. N.; Wan, X. G.; Pellegrin, E.; Hu, Z. W.; Liang, W. I.; Bruns, M.; Zou, W. Q.; Du, Y. W.
2015. Chinese Physics B, 24 (3), 034501/1–6. doi:10.1088/1674-1056/24/3/034501
Ternary polymer electrolytes incorporating pyrrolidinium-imide ionic liquids.
de Vries, H.; Jeong, S.; Passerini, S.
2015. RSC Advances, 5 (18), 13598–13606. doi:10.1039/C4RA16070C
Disordered lithium-rich oxyfluoride as a stable host for enhanced Li⁺ intercalation storage.
Chen, R.; Ren, S.; Knapp, M.; Witter, R.; Fichtner, M.; Hahn, H.
2015. Advanced energy materials, 5 (9), 1401814/1–7. doi:10.1002/aenm.201401814
On the rehydrogenation of decomposed Ca(BH₄)₂.
Riktor, M. D.; Soerby, M. H.; Muller, J.; Bardaji, E. G.; Fichtner, M.; Hauback, B. C.
2015. Journal of alloys and compounds, 632, 800–804. doi:10.1016/j.jallcom.2015.01.243
Effect of carbonates fluorination on the properties of LiTFSI-based electrolytes for Li-ion batteries.
Bolloli, M.; Alloin, F.; Kalhoff, J.; Bresser, D.; Passerini, S.; Judeinstein, P.; Lepretre, J. C.
2015. Electrochimica acta, 161, 159–170. doi:10.1016/j.electacta.2015.02.042
Sol-gel processing and electrochemical conversion of inverse spinel-type Li₂NiF₄.
Lieser, G.; de Biasi, L.; SCheuermann, M.; Winkler, V.; Eisenhardt, S.; Glatthaar, S.; Indris, S.; Geßwein, H.; Hoffmann, M. J.; Ehrenberg, H.; Binder, J. R.
2015. Journal of the Electrochemical Society, 162, A679-A686. doi:10.1149/2.0591504jes
Low-temperature performance of Li-ion batteries: The behavior of lithiated graphite.
Senyshyn, A.; Mühlbauer, M. J.; Dolotko, O.; Ehrenberg, H.
2015. Journal of power sources, 282, 235–240. doi:10.1016/j.jpowsour.2015.02.008
Estimate of the crystallization volume fraction in lithium disilicate glass-ceramics using Fourier transform infrared reflectance spectroscopy.
Mahmoud, M. M.; Folz, D. C.; Suchicital, C. T. A.; Clark, D. E.
2015. Journal of the European Ceramic Society, 35 (2), 597–604. doi:10.1016/j.jeurceramsoc.2014.09.004
Observation of the second-order magnetic and reentrant spin-glass transitions in LiNi₀̣₅Mn₀̣₅O₂.
Bie, X.; Gao, Y.; Yang, X.; Wei, Y.; Ehrenberg, H.; Hinterstein, M.; Chen, G.; Wang, C.; Du, F.
2015. Journal of alloys and compounds, 626, 150–153. doi:10.1016/j.jallcom.2014.11.162
Nanoscale spinel LiFeTiO₄ for intercalaction pseudocapacitive Li⁺ storage.
Chen, R.; Knapp, M.; Yavuz, M.; Ren, S.; Witte, R.; Heinzmann, R.; Hahn, H.; Ehrenberg, H.; Indris, S.
2015. Physical chemistry, chemical physics, 17 (2), 1482–1488. doi:10.1039/C4CP04655B
Direct synthesis of trirutile-type LiMgFeF₆ and its electrochemical characterization as positive electrode in lithium-ion batteries.
Lieser, G.; Dräger, C.; de Biasi, L.; Indris, S.; Geßwein, H.; Glatthaar, S.; Hoffmann, M. J.; Ehrenberg, H.; Binder, J. R.
2015. Journal of power sources, 274, 1200–1207. doi:10.1016/j.jpowsour.2014.10.151
Evidence of loss of active lithium in titanium-doped LiNi₀̣₅Mn₁̣₅O₄/graphite cells.
Höweling, A.; Glatthaar, S.; Nötzel, D.; Binder, J. R.
2015. Journal of power sources, 274, 1267–1275. doi:10.1016/j.jpowsour.2014.10.199
Corrosion Resistance of Current Collector Materials in Bisamide Based Electrolyte for Magnesium Batteries.
Wall, C.; Zhao-Karger, Z.; Fichtner, M.
2015. ECS Electrochemistry Letters, 4 (1), C8-C10. doi:10.1149/2.0111501eel
Fatigue of LiNi₀̣₈Co₀̣₁₅Al₀̣₀₅O₂ in commercial Li ion batteries.
Kleiner, K.; Dixon, D.; Jakes, P.; Melke, J.; Yavuz, M.; Roth, C.; Nikolowski, K.; Liebau, V.; Ehrenberg, H.
2015. Journal of power sources, 273, 70–82. doi:10.1016/j.jpowsour.2014.08.133
Unfolding the mechanism of sodium insertion in anatase TiO₂ nanoparticles.
Wu, L.; Bresser, D.; Buchholz, D.; Giffin, G. A.; Ramirez Castro, C.; Ochel, A.; Passerini, S.
2015. Advanced Energy Materials, 5 (2), 1401142/1–11. doi:10.1002/aenm.201401142
2014
Massive conformational changes during thermally induced self-metalation of 2H-tetrakis-(3,5-di-tert-butyl)-phenylporphyrin on Cu(111).
Stark, M.; Ditze, S.; Lepper, M.; Zhang, L.; Schlott, H.; Buchner, F.; Röckert, M.; Chen, M.; Lytken, O.; Steinrück, H.-P.; Marbach, H.
2014. Chemical communications, 50 (71), 10225–10228. doi:10.1039/C4CC03708A
DCB-based low-inductive SiC modules for high-frequency operation.
Meißer, M.; Hamilton, D.; Blank, T.; Mawby, P.
2014. 8th International Conference on Integrated Power Electronics Systems (CIPS), Nürnberg, February 25-27, 2014, 472–481, VDE-Verl., Berlin
Low-inductive compact SiC power modules for high-frequency operation.
Meisser, M.; Hamilton, D.; Blank, T.; Mawby, P.
2014. International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (PCIM Europe 2014), Nürnberg, May 20-22, 2014, 1046–1053, VDE-Verlag, Berlin
Copper thick-film substrates for power electronic applications.
Blank, T.; Leyrer, B.; Maurer, T.; Meisser, M.; Bruns, M.; Weber, M.
2014. 5th Electronics System-Integration Technology Conference, ESTC 2014, Helsinki, FIN, September 16 - 18, 2014, IEEE, Piscataway, N.J. doi:10.1109/ESTC.2014.6962860
3d-Transition metal doped spinels as high-voltage cathode materials for rechargeable lithium-ion batteries.
Bhaskar, A.; Mikhailova, D.; Kiziltas-Yavuz, N.; Nikolowski, K.; Oswald, S.; Bramnik, N. N.; Ehrenberg, H.
2014. Progress in solid state chemistry, 42, 128–148. doi:10.1016/j.progsolidstchem.2014.04.007
Nanotoxicity and life cycle assessment: First attempt towards the determination of characterization factors for carbon nanotubes.
Garcia-Rodriguez, G.; Zimmermann, B.; Weil, M.
2014. IOP conference series / Materials science and engineering, 64, 012029/1–7. doi:10.1088/1757-899X/64/1/012029
MFe2O4 (M = Co, Mg, Mn, Ni, Zn) nanoparticles as anode materials in Li-ion batteries: An in-situ study of the reaction pathway.
Permien, S.; Indris, S.; Bensch, W.
2014. ANKA User Reports 2012/2013, 228–229, KIT, Karlsruhe
A XAFS study of the conversion reaction mechanism in FeF3 cathode materials for Li-ion batteries.
Pohl, A.; Das, B.; Scheiba, F.; Rothe, J.; Ehrenberg, H.; Fichtner, M.
2014. ANKA User Reports 2012/2013, 104–106, KIT, Karlsruhe